한국지반공학회:학술대회논문집 (Proceedings of the Korean Geotechical Society Conference) (Proceedings of the Korean Geotechical Society Conference)
한국지반공학회 (Korean Geotechnical Society)
- 기타
- 한국지반공학회 1997년도 토목섬유 학술발표회 논문집
- 한국지반공학회 1997년도 연약지반처리위원회 가을 학술세미나
- 한국지반공학회 1997년도 가을 학술발표회 논문집
- 한국지반공학회 1997년도 사면안정 학술발표회 논문집
- 한국지반공학회 1997년도 Lecture Notes by Two Distinguished Scholars
- 한국지반공학회 1997년도 H말뚝 기초공법 학술세미나
- 한국지반공학회 1997년도 터널기술 Work Shop-II(정보화시대의 터널기술의 위상)
- 한국지반공학회 1997년도 정보화시공.지반굴착위원회 공동학술발표회 논문집
- 한국지반공학회 1997년도 봄 학술발표회 논문집
- 한국지반공학회 1993년도 지하공간 건설기술에 관한 서울 심포지움 논문집
- 한국지반공학회 1993년도 가을 학술발표회 논문집
- 한국지반공학회 1993년도 토목섬유
- 한국지반공학회 1993년도 지반굴착
- 한국지반공학회 1993년도 지반계측
- 한국지반공학회 1993년도 준설.매립 연약지반의 해석 및 처리기술
- 한국지반공학회 1993년도 연약지반처리
- 한국지반공학회 1993년도 산사태 조사·시공에 있어서의 최신의 논제
- 한국지반공학회 1993년도 사면안정
- 한국지반공학회 1993년도 학술발표집 지반진동 영향평가
- 한국지반공학회 1993년도 지반.환경 매립에 관한 학술발표회 논문집
- 한국지반공학회 1993년도 말뚝기초
- 한국지반공학회 1993년도 봄 학술회 논문집
한국지반공학회 2003년도 봄 학술발표회 논문집
-
In this presentation, soil dynamics for vibrating machine foundation is briefly stated, and the result of a model pile test is presented. Analystical methods used in solving for the stiffness and damping factor for pile-soil system are also treated and the results of the test and the calculated values are compared.
-
In this study, a newly modified soil nailing technology named as the pretension soil nailing system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the pretension soil nailing system, has been investigated mainly focusing on an establishment of the design procedure. In the present study, laboratory model tests are carried out to investigate the failure mechanism and behavior characteristics of the pretension soil-nailed wall. Various results of model tests are also analyzed to provide a fundamental basis for the efficient design.
-
This paper presents the prediction of deep excavation-induced ground surface movements using artifical neural network(ANN) technique, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Arificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.
-
Deep excavations in the urban areas have been frequently going on in large scale. Soil-nailing and Earth-anchor supporting methods are generally used in deep excavation. These construction methods cause ground disturbances during drilling process, and damages of adjacent structures and ground due to the differential settlement throughout construction period, and unexpected behaviors of supporting system according to the characteristics of drilling machine and ground condition. This article introduces two actual examples of adjacent deep excavation for the construction of university buildings in granitic Seoul area. The important results of construction and measurements obtained using Crawler drilling machine for Soil-nailing and Earth-anchor supporting methods are summarized. And some suggestions are given to improve and develop the technique of design and construction in the deep excavation projects having similar ground condition and supporting method.
-
Generally, ordinary portland cement(OPC) is widely used for grouting to reduce permeability of ground under the foundations of structures. But, it is hard to be injected into the microscopic voids, fissures and crevices in soil or rock formation for the OPC material. Therefore new method what is called MSG(Micro Silica Grouting) has been developed recently to improve the weak point of the OPC material. In this case study, in order to verify performance of the MSG's water cut-off, trial injections were performed in rear of CIP(Cast in Place Pile) on the site A(weathered soil) and B(alluvial soil) that are constructed for the subway No. 9 nowadays. To take the proper grouting method of the MSG in the trial injecting, the injections are carried out for grouting types(constant pressure or fixed Quantity) and grouting methods(1.5shot or 2.0shot) and to confirm the effects of water cut-off and the injection range of the MSG, the tests of permeability and indicator(phenolphthalein) response were performed before and after the injection. Through the tests results, we could affirm the effects of water cut-off of the MSG and the injection range for the weathered and alluvial soil layers near the Han River. Finally we could make sure the application of the MSG method in actual construction under the layers.
-
Corestone rock mass has complex characters because it is made up of stronger and stiffer corestone in a weaker and softer matrix. Physical model corestone rock mass made up of stiffer corestone in weaker matrix were tested in uniaxial compression and numercal modelling analysis The result of the uniaxial compression tests showed that increasing the corestone proportion generally increased the modulus of deformation. And the strength decreased in the lower corestone proportion, but it increased in the higher proportion(45%, 65% corestone by volume). The strength and the modulus of deformation were not affected by different size coretone on the same proportion. The result of the numerical modelling analysis showed similar trend compared with the result of the result of the uniaxial compression test. But though the result of th uniaxial compression test is similar to the result of the numerical modelling analysis, it's unreasonalble to apply the results of this paper to in situ corestone rock mass. So mere laboratory tests including triaxial test and the other numerical program analyses are necessary to apply the results to in situ corestone mass
-
This study is as for shale that attract recently geotechnical engineer more and more. like sedimentary rocks and metamorpic rocks, shales have many problem with anisotropy for stength and deformation and they have many problems with quick weathering progress and differential weathering of alternate bedding. In foreign countries, many renowned schalors, like Jaeger(1960),McLamore,Gray(1967),Donath(1972),Nova(1980),Hoek&Brown(1980),Ranamurthy(1985), have already studied for a variety of characteristic and announced high level results of their studies. In domestic also, there are many scholars who have announced high level research papers for shale. this study is a part of these stream. and this study not only analyzed strength anisotropy characteristic along with direction of testing(two-direction) by using point-load test(log-log method) but also compared uniaxial strength between the maximum saturated and dried condition. In this study, we also conducted slaking test. these results of slaking test show weathering characteristic of shales. also, we made the most of field data that obtained during slope stability project and we noticed that RQD measured in the field is much differ from drilled core RQD. In order to come close two different value or access to reality, we suggest new RQD method that artificially reduce RQD by separating core with light hand force.
-
Instrumentation system in Concrete Face Rockfill Dam(CFRD) can give special attention to the deformation characteristics of the rockfill and behavior of the concrete membrane during construction, reservoir filling and subsequent phase of operation. It also contains data about vertical and transversal compressibility moduli of the rockfill, deflections in the concrete slab, and draws comparisons with other concrete face rockfill dams of recent construction. In this paper, the internal deformation data from D dam monitored by means of hydrostatic settlements cells are analyzed. Observations cover the construction stage, reservoir filling and up to March 1991. The above method can be concluded D dam was well constructed and maintained.
-
Every year in domestic slope failure caused by rainfall is happening frequently. Specially, causable failure accident by localized downpour accompanied when summer rainy season period and produces typhoon gets damage of large scale human life and property. Failure happened at slope of 121 places ranged whole country national highway by No.15 typhoon Rusa that strike whole country during 3 days from August 30, 2002. Slope failure that happen by typhoon are judged for major cause to effect of ground saturation and surface water by localized downpour. In this research, failure characteristic was analyzed to target 20 places attaining site investigation among failure slope. As a result, erosions by surface water was construed for major cause of failure and judged for direct relation in failure slope weathering and topography Also, result that analyze inclination of failure part, in the case of ripping rock, inclination of failure side is forming Incline of the lowest 40
$^{\circ}$ , because surface failure of depth 4m on or so scale happened, it is require that regulating plan gently design standard inclination of weathered rock and soil layer And it is considered that desirable preparation of design standard about measure that help smooth drainage of surface water and can restrain percolation in ground to reduce failure damage by rainfall. -
The estimation of key soil properties and subsequent quantitative assessment of the associated uncertainties has always been an important issue in geotechnical engineering. It is well recognized that soil properties vary spatially as a result of depositional and post-depositional processes. The stochastic nature of spatially varying soil properties can be treated as a random field. A practical statistical approach that can be used to systematically model various sources of uncertainty is presented in the context of reliability analysis of slope stability Newly developed expressions for probabilistic characterization of soil properties incorporate sampling and measurement errors, as well as spatial variability and its reduced variance due to spatial averaging. Reliability analyses of the probability of slope failure using the different statistical representations of soil properties show that the incorporation of spatial correlation and conditional simulation leads to significantly lower probability of failure than obtained using simple random variable approach.
-
Landslide is a natural disaster frequently noticed In korea during monsoon season in flicting nationwise damages on human lives, properties, transportation networks, construction sites, etc. This study is about landslide characteristic in rainfall. This study selects seven sites that occured in 2001 and 2002. So elect areas divide and studied special quality by carcinoma by igneous rock, metamorphic rock, sedimentary rock. According to study finding, because igneous rock area is very thin into 1m interior and exterior soil layer, failures happened much rock and soil interface. There was place that depth of soil layer becomes about 2∼3m being area that receive serious weathering case of metamorphic rock. Therefore, at collapse much debriflow occurrence expect. Case that sedimentary rock area is broken through stratification looked. When see such results, it may become many helps to study characteristics of landslide occurrence area grasping collapse special quality by rock type.
-
Continuous road improvement is required by situation that need link between cities by special quality that is our country's topography enemy that most of country have consisted to mountain district. According to this, occurrence of large cutting slope is formed necessarily Cutting slope are very weak real condition because of concentrative downpour and can know easily by example of typhoon Rusa. This study did helpful in slope design and carrying out suitable reinforcing method.
-
The purpose of this paper is to develope an understanding of fundamental mechanism of shear behaviour between granite and concrete interfaces. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axisymmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed In granite. The samples were prepared in the laboratory to simulate field condition, roughness(angle, height), stress boundary condition, and then tested by CNS direct shear tests. This paper gives some points about shearing behaviour of socket piles into domestic granite through the analysis of CNS tests results.
-
While the interests on the environmental problem during the construction are increasing, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. Therefore, in Korea, SIP(Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. However, there is no proper design criteria compatible with the ground condition of Korea, so which is most wanted. To improve and supplement this situation, direct shear tests between SIP pile skin interface and soil were executed on various conditions. Through the analysis of test results, skin resistance characteristics of SIP were investigated thoroughly. Also, the nonlinear unit skin resistance capacity model with SM, SC soil were suggested.
-
평판재하시험은 재하시험시 표층의 매우 잘 다져진 곳에 대한 지지력 계수를 획득하여 실다짐도를 과대 평가하는 결과를 초래할 수 있다. 이에 착안하여 응력도달 범위가 작은 평판재하시험을 지양하고 콘관입시험으로부터 획득되는 노상의 관입지수로부터 지반의 다짐도를 추정할 수 있는 콘관입시험기와 구동시스템 및 해석 프로그램을 개발하였다.
-
Undrained triaxial tests were performed under
$K_{0}$ condition for a weathered soil, which includes local measurement using LVDT. An anisotropic hardening model based on effective stress concept could predict the stress-strain relationship under$K_{0}$ condition reasonably, which makes it possible to analyze geotechnical problems for the weathered soil. -
매립장 내의 설치된 중간 복토층(intermediate cover)은 매립 도중 혹은 매립완료 후 종종 침출수가 하부의 침출수 집배수관으로 이동하는 것을 막아 매립장 내에 일정 침출수위를 형성시킨다. 이렇듯 중간 복토층은 침출수의 원활한 순환을 막아 매립장 바닥에 형성되어야 하는 침출수위가 중간복토층 위에 형성되도록 하는데, 이는 매립장의 구조적 안정성을 깨뜨리고 주변으로 침출수 누출을 유발시키게 된다. 본 연구에서는 이처럼 중간복토층 상부에 형성된 침출수위를 저하시키기 위하여, 폐기물 매립시 중간복토층에 투수성이 뛰어나고 역학적 강도와 화학적 내구성을 갖는 배수파일(Drain Pile)을 설치할 것을 제안하였다. 배수파일은 중간복토층 상부에 형성될 수 있는 침출수를 매립장 바닥으로 배수시키고, 침출수 집배수정으로 이송이 가능하게 만든다. 또한 배수파일은 매립장 내부에 설치됨으로써 폐기물의 자체 강성을 증가시키고, 동시에 매립장의 측방유동을 막아 구조적 안정성을 확보하는 효과도 기대할 수 있다. 실내시험을 통해 배수파일 충진재로서 굴패각의 활용가능성을 확인한 결과, 산업 폐기물인 굴패각이 침출수의 pH를 중화시키고 유해물질인 NH
$_{4}$ $^{+}$ 를 제거하는데 효과적임을 확인할 수 있었다. 한편, 실제현장의 침출수흐름을 모사하기 위해 범용 프로그램(SEEP/W)을 이용하여 매립지 내에서 배수 파일의 효과를 확인하였다. -
오염된 지하수 정화에 있어 반응벽체(Permeable Reactive Barriers, PRBs)를 이용한 정화기법은 최근 가장 큰 관심을 모으고 있는 기술이다. 반응벽체의 적용에 있어 가장 중요한 사항은 오염물질의 특성을 고려하여 적절한 반응성을 가지는 충진물질을 선택하는 일이다. 지금까지 연구된 반응물질 중 제올라이트는 취득이 용이하고 가격이 저렴하여, 암모늄이나 중금속과 같은 양이온성 오염물질의 정화에 그 적용성을 인정받아왔다. 하지만 표면에 음전하를 띠는 제올라이트의 특성 때문에, 지하수내에서 음이온의 형태로 존재하는 Cr(VI) 등에는 반응성이 없는 것으로 알려져 왔다. 이에 본 연구에서는 제올라이트에 영가철을 결합한 ZanF란 물질을 개발하여 양이온성 중금속의 하나인 납과 음이온성 중금속의 하나인 Cr(VI)을 동시 제거하는 실험을 수행하였다. 실험결과 ZanF는 초기농도 2-15mmol를 가지는 납 오염용액에 대해 90% 이상의 제거율을 보였으며, 초기농도 0.1 mmol을 가지는 Cr(VI) 오염용액의 농도를 5시간 내에 검출한계 이하로 떨어뜨리는 탁월한 효과를 보였다. 실험결과를 토대로 ZanF는 납과 Cr(VI)으로 동시에 오염된 지하수 정화에 효과적으로 사용될 수 있으리라 기대된다.
-
Soil-cement column is often used as a contaminant barrier. This study presents the results of experimental study performed to investigate the changes of properties of soil-cement column under the attack of acids. Sulfuric nitric, and ascetic acid were used as contaminants. Specimen were made of clayey and sandy soils with addition of cement and water Permeability of soil-cement decreased with time during permeability test. When significant amount of acid percolated the specimen, permeability increased and compressive strength decreased due to the dissolution and leaching of cement and its chemical reaction compounds. Sulfuric and nitric acid were more effective than ascetic acid in deteriorating soil-cement column. Amount of acid required to lower the pH of soil cement below 12 was calculated from the results of permeability tests. This leads to a conclusion that, under the conditions employed in this study, the chemical stability of soil-cement column could be maintained against acid attack for longer than generally accepted lifetime of contaminant barriers.
-
The leakage quantity through concrete facing of Concrete Face Rockfill Dam(CFRD) is very small due to its low permeability of intact concrete. Even though the concrete facing is well designed and constructed, fine cracks can be generated due to effects of thermal and drying shrinkage. Therefore, it can be said that the leakage from the CFRD is subjected to not permeability of intact concrete but poor joints, cracks and foundation rocks. The Safety of a dam on leakage was evaluated based on the comparison between apparent permeability estimated and leakage quantity measured. The above method can be concluded to give a good direction for the evaluation of safety on CFRD in maintenance aspects as design and construction technology is improved with the accumulation of leakage data.
-
격자망식 전선배치에 의한 전기비저항 측정기법을 이용한 침출수 누출감지시스템을 개발하여 그 적용성을 평가하기 위하여 현장모형시험을 수행하였다. 현장모형시험을 수행한 결과 침출수 누출지점에서 전기비저항이 크게 감소하여 누출지점을 정확하게 감지할 수 있었다. 격자망식 전선배치에 의한 전기회로적인 효과로 인하여 전기비저항이 감소된 지점과 동일 전선상에 연결된 다른 센서에서의 측정값도 다소 감소하는 경향을 나타내었다. 이를 보정하기 위하여 P-SPICE를 이용하여 전기회로 시뮬레이션을 수행하여 전기회로 효과를 정량적으로 평가하였다 P-SPICE 시뮬레이션의 결과를 토대로 보정계수를 도출하여 현장모형시험결과를 보정하였으며, 보정된 겉과에 의하면 전기회로적 특성에 의한 영향을 효과적으로 제거되어 누출지점에서의 전기비저항 감소가 명확하게 나타났다.
-
굴폐각은 굴양식 후 남는 것으로 남해안에서 주로 집중적으로 발생하는데 연간 28만톤의 발생량 중 상당양은 폐기물로 계속 누적되고 혹은 불법매립되어 환경오염 문제까지 발생시키고 있다. 본 연구에서는 산업폐기물로 분류되는 굴패각을 지반공학 분야에서 활용하기 위한 대안으로 해성점토와 혼합하여 매립재료로써의 적용성을 평가하기 위하여 대형 압밀기를 이용하여 실험을 실시하고 이를 토대로 기초자료를 획득하고자 하였다. 원형의 굴패각을 파쇄하여 입도별로 분류하고 이중 사질토 입경 크기의 재료에 대한 기본 물성치를 평가하고 지반 재료로써의 적용성를 분석하였다. 해성점토 내의 굴패각입자의 혼합비를 변화시켜 만들어진 혼합토에 대한 압밀 실험 결과 굴패각의 혼합율이 증가할수록 체적변화율이 작게 되고, 침하 속도는 빠르게 증가함을 알 수 있었다. 이는 압밀응력의 일부를 굴패각 입자의 골격구조가 부담함으로써 실제 점토부분에 작용하는 압밀응력은 굴패각 혼합율이 증가할수록 작아지는 것으로 판단된다.
-
This study was carried out to investigate the geotechnical characteristics and field application of soil mixed with waste lime. Waste lime used in this study is producted as a by-product in the manufacturing process of making Na
$_2$ CO$_3$ from local chemical factory in Incheon. Currently about 320 milton tons of waste lime are accumulated and annually 100,000 tons are producted. In this study, feasible use of waste lime mixed with granited whathered soil, clay, crushed rock was invesigated through laboratory tests including specific gravity test, sieve analysis, hydrometer analysis, compaction test, CBR test. Field investigations were conducted on the road construction site in Incheon. -
The behaviour of ground induced by tunneling of 2arch tunnels may differ from the one caused by usual type tunnels. This paper describe the behaviour created by the size of pilot tunnel and the condition on the construction method of center piller Also, loads acting on the supports of the first tunnel and the center pillar during the excavation of second tunnel is investigated by numerical analyses. The results of numerical analyses are compared to the data records of measurement results, i.e. force on the support system and ground displacement.
-
A GIS-based tunnelling risk management system (GIS-TURIMS) has been developed in this study The developed system uses ArcView 8.2 as a basic platform and the built-in interface(VBA) has been used to perform first-order simplified analyses for prediction of tunnelling-induced ground movements and building damage assessment. The main emphasis in this study was to develop a working framework that can be used in the perspective of tunnelling risk management. The developed system is capable of carrying out computationally intensive first-order analyses for ground movement prediction as well as building/utilities damage assessment with fully taking advantage of the GIS technologies. This paper describes the concept and details of the GIS-TURIMS development and implementation.
-
In August 2002, side wall of OO tunnel, at the Bonghwa, Kungbuk province, Korea, was collapsed by abruptly applied heavy soil and water pressure to side wall from a inclined shaft when there was a heavy rain. These days, Inclined shaft is used for the purpose of reducing construction time, using ventilation system, using the out of carrying equipment and mucking when we construct tunnel in the world. Recently constructed tunnel has the source of inclined shafts, but the more time elapse, we lose the source of the inclined shaft such as exact position, condition, and the fact that whether inclined shaft is exist or not. Therefore, this study inspected the interior's appearance, analyzed structure to evaluate the reason of collapsing side wall and this study also performed the repairing work. Finally, we show improving maintenance method to prevent that similar accident that might be happened.
-
To investigate the safety and stability of the concrete lining, numerous studies have been conducted over the years and several methods have been developed. Most signal processing method of NDT techniques has based on the Fourier analysis. However, the application of Fourier analysis to analyze recorded signal shows results only in frequency domain, it is not enough to analyze transient waves precisely. In this study, a new NDT technique .using the wavelet theory was employed for the analysis of non-stationary wave propagation induced by mechanical impact in the concrete lining. The wavelet transform of transient signals provides a method for mapping the frequency spectrum as a function of time. To verify the availability of wavelet transform as a time- frequency analysis tool, model experiments have been conducted on the concrete lining model. From this study, it was found that the contour map by Wavelet transform provides more distinct results than the power spectrum by Fourier transform and it was concluded that Wavelet transform was an effective tool for the experimental analysis of dispersive waves in concrete structures.
-
Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.
-
In this study, the rock mass classification results from the face mapping and the resistivity inversion data are compared and analyzed for the reliability investigation of the determination of the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system based on RMR(rock mass rating) are calculated. Kriging method as a post processing technique for global optimization is used to improve its resolution. The result of correlation analysis shows that the geological condition estimated from 2D electrical resistivity survey is coincident globally with the trend of rock type except for a few local areas. The correlation between the results of 3D electrical resistivity survey and the rock mass classification turns out to be very high. It can be concluded that 3D electrical resistivity survey is powerful to set up the reliable rock support type.
-
Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multi-step grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multi-step grouting was evaluated by simultaneously considering two factors: one is the effective stress acting on the tunnel face calculated by limit theorem and limit equilibrium method; the other is the seepage force obtained by means of numerical analysis. The study revealed that the influence of the steel pipe-reinforced multi-step grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage force acting on the tunnel face.
-
In karst formation area, the tunnel support system is an important factor for the tunnel safety during operation. This paper presents the simplified tunnel support systems to be adopt in karst formation. For the tunnel planned in the project area, karst features and the expected scenarios in the tunnel area were developed based on the results of the geological and geotechnical assessment. In order to provide specific supporting system and construction details for a wide range of possible karst features, the generalized typical support systems are developed according to the classification of karst features. In addition, the initial support systems and construction sequence for each karst feature are also presented in this paper.
-
The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.
-
In order to investigate the dynamic deformation properties of rockfill materials in small strain level, cyclic triaxial tests were conducted using the large cyclic triaxial testing apparatus, which was developed by Water Resources Research Institute of KOWACO in 2001. Two types of rockfill materials consisting of granite and shale-sandstone were tested in this study. The test results show that G/G
$\_$ max/ of granite specimen decreases more than that of shale-sandstone with the increase of shear strain and the increase ratio in the maximum shear modulus G$\_$ max/ of granite is bigger than the ratio of shale-sandstone. -
Impact Echo method has been successful in detecting a variety of defects in concrete structure. This study has the objectives to show important aspects of applying the Discrete Wavelet Transform(DWT) to signal processing of Modified Impact Echo(ModIE) Measurement systems and to the understanding of the seismic wave propagation. The data of ModIE were processed by DWT and compared with the results of conventional ModIE Analysis. Although it is inconsistent in the evaluated thickness of concrete lining, the DWT provides the features of separation, synthesis and de-noising in the original signal. The application of technique by wavelet was explained numerically with ABAQUS and performed experimentally with a real scale model in this work. Further works on the possible ways for creating new mother wavelet are specially needed for the enhancement of seismic signal analysis.
-
Cyclic simple shear tests were performed to find out the effect of preshear on dynamic strength of the sandy soil. Tests were performed for the specimens with 40% and 60% of relative density, under three different effective vertical stress of 50, 100 and 200kPa. For 50 and 100kPa, preshear ratios 0.00, 0.08, 0.12 and 0.16 were given, respectively, For low and high relative densities, two different results are shown in dynamic tests. Under the dense conditions, the maximum shear stress ratio(
$\tau$ $\_$ cyc//$\sigma$ $\_$ vo/) and the cyclic shear stress ratio($\tau$ $\_$ cyc//$\sigma$ $\_$ vo/) causing a certain shear strain increase with augmenting preshear ratio(${\alpha}$ ). However, the maximum shear stress ratio and the cyclic shear stress ratio increase or decrease with increasing preshear ratio under the loose conditions. Correction factor(K$\_$ ${\alpha}$ /) for preshear increases at an early stage and then decreases with increasing preshear ratio at loose condition and increase with increasing preshear ratio at dense condition. Correction factor (K$\_$ ${\alpha}$ ,Max/) for preshear increases with the increasing preshear ratio irrespective of relative density, and the value of has same behavior as K$\_$ ${\alpha}$ /. -
In general, soil characteristics are estimated through the sample gathered by field boring without considering sample disturbance. However, soil characteristics must be changed by the degree of sample disturbance. Therefore it be need to estimate the soil characteristic considering sample disturbance which can be occurred by the change of stress condition, sampling technique and handling method. On this study, we analyzed the sample disturbance by using the methods of volume change, residual effective stress, elastic modulus and the curve of consolidation tests. In order to estimate the relationship between sample disturbance and soil characteristics, we used the piston sample and the block sample. As the results, it should be considered in design that the disturbance of the block sample, which affects the strength and compression properties of clay, is smaller than the disturbance of piston sample.
-
In Korea, drilled shaft are generally socketed into rock. Driven pile has environmental problems such as vibration and noise. Therefore, applications of the drilled shaft are increasing in Korea. In this paper, static load test data of the rock socketed drilled shaft at Gwangandaero and Suyeong 3hogyo are analyzed. The bearing capacities from field test data and theoretical formula are compared and analyzed. From this study, design approaches for drilled shafts in Korea are examined and several suggestions are proposed.
-
In the estuary of Nagdong River thick marine sediments were deposited by the Holocene marine transgression. The sediments largely consist of silty clay, which is called Pusan clays in the geotechnical field. This paper presents engineering geological characteristics of Pusan clays in Beombangdong area. Overall geological environmental changes based on several geological properties are discussed and synthesized as Geological Environmental Zones. And also, engineering properties of the clays in laboratory and field are discussed and synthesized as Engineering Zones. Two zones are correlated and engineering characteristics are evaluated in view of engineering geology.
-
Almost every material of PVD (Prefabricated Vertical Drain) has the fatal problem on the condition - the length must shorten with the settlement of the surrounding grounds - which all PVDs must satisfy. Kinking deformation by buckling of PVD due to consolidation settlement Is discussed in this paper. A new testing device to clarify the deformation of PVD under consolidation of surrounding clay was developed and the fiber drain and a PVD made of plastics were compared under the same condition of consolidation using natural clay specimens. The results are also shown in this paper.
-
For safety evaluation of a rock-fill dim, it is often necessary to investigate spatial distribution of weak zones such as fracture. Both DC-resistivity survey and seismic(SASW) method are usually used for the purpose. Recently, Multichannel analysis of surface waves(MASW) method which makes up for the weak point of SASW method is developed and the site examination which is simple came to be possible comparatively. In order to obtain 2-D shear-wave velocity(Vs) profile along the dam axis that can be associated with dynamic properties of filled materials, MASW method was adapted. Then, DC-resistivity survey and drilling survey were performed to compare with each results. We confirmed that the MASW method and DC-resistivity survey show complementary result that corresspond with drilling result. Therefore, MASW method is an efficient method for dynamic characterization of dam-filling materials and also the combination of related methods such as DC-resistivity can lead to an effective safety evaluation of rock-fill dam.
-
Despite of the simple equipment and operation, DMT has been widely used to obtain various soil parameters and those parameters have been successfully applied to geotechnical design practice. Among them, the estimation of horizontal coefficient of consolidation is so useful that many researchs recently have been carried out. However, simulation of the penetration of the DMT blade is complex due to the inherent difficulty on analyzing a plane strain deformation of the soil around blade. Therefore, empirical and semi-empirical methods that use the theoretical solution developed fur piezocone with some assumptions have been used to estimate the coefficient of consolidation from Dilatometer dissipation test. In this paper, coefficients of consolidation c
$\_$ h/ which were obtained using equivalent radius that is same area with the DMT blade and optimization technique are compared with those obtained from Oedometer test and other interpretation methods. It was found that a new method used in this study can give more precise horizontal coefficient of consolidation than other methods do. -
A study of anisotropy of magnetic susceptibility (AMS) have been carried out to understand the tectonic stress field of late Cretaceous-Tertiary strata in Yangsan area. A total of 119 independently oriented core samples were collected from 9 sites throughout the area. The study results show that 5 sites are characterized by load foliation, and 4 sites by tectonic foliation. Load foliations caused by the weight of the overlying strata occur in the central part of the study area. Tectonic foliations created by compressional tectonic force show a regional variation in direction: Direction of compression axes derived from tectonic foliation in the southern part of the study area is approximately WNW-ESE, while it changes into NE-SW northern part of the study area. Such compressional directions are compatible with the lineament directions in each area.
-
This study, Using Pusan clay, examined a relationship between Dynamic and Static Liquid Tests. The Static Liquid Tests wow carried out based on BS and JIS. The results of the study are summarized as follows. (1) The result of the Dynamic Liquid Limit Test showed that the liquid limit values of air-dried soil were greater than those of oven-dried soil by 4%~15% (2) The liquid limit value of the Static Liquid Limit Test was greater than that of the Dynamic Liquid Limit Test by 2%~9%. The following equations show the relationship between the two values WL,Fall(JIS) = 0.961ㆍWL,Cas. + 4.209 WL,Fall(BS) = 0.969ㆍWL,Cas + 5.024 (3) The liquid limit value of BS was greater than that of JIS by 1%~6%. The following equation shows the relationship between the two values.
-
Traditional forms of river and coastal structures have become very expensive to build and maintain, because of the shortage of natural rock. Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. In this study, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also compared the results of 2-D plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be a good agreement.
-
지오멤브레인(geomembrane)과 다른 토목섬유, 즉 지오텍스타일 또는 GCL, 사이의 interface 전단거동을 특성화하는 strain-softening 모델을 개발하였다. 본 연구에 제안된 모델은 일차적으로 smooth 지오멤브레인과 textured 지오멤브레인을 대상으로 실시한 직접전단 시험결과를 대상으로 구축되었다. 시험을 통해 측정된 변위-전단응력의 관계는 strain-softening 현상를 고려하기 위해서 최대점이 발생하는 위치를 기준으로, pre-peak과 post-peak 영역으로 나누어 분석을 실시하였다. 실험결과를 토대로 구축된 모델식은 원 자료와의 비교를 통해 본 모델의 유효성을 검증하였다. 비교 결과 높은 연직 응력에서 약간의 차이를 보이긴 하지만, 대체적으로 실험 결과와 구축된 모델을 이용한 역계산의 값이 좋은 일치를 보임을 확인할 수 있었다. 특별히 연직응력이 낮은 단계에서는 높은 일치를 보였는데, 이를 통해 제안된 식이 매립지의 최종 cover와 같이 상재 연직하중이 작은 경우에 지오멤브레인이 포함된 interface의 전단 거동에 대한 합리적인 구성 방정식이 될 수 있음을 확인할 수 있었다.
-
EPS(Expanded Polystyrene) has been used in a variety of applications as a solution of difficult soil conditions encountered in construction activities. Although there has been significant worldwide growth in the use of EPS as a lightweight fill material, it has a few failure cases before and after the construction. This paper described the observed failures of EPS structures up In date around the world. Also, method of quality control was proposed for site monitoring.
-
As rapid industrialization continues in these days, construction in the down town areas increases. Since constructions are performed around old and existing structures, the need to provide reinforcements to protect the existing structures from collapse and damage arises. Furthermore, if the construction is to take place in the down town area, difficult work space and damage caused by noise, vibration and collapse of structure can't be ignored. Among the remedial measures available today, micropile reinforcement is considered the best method to remedy these problems. But up to the present the characteristics of micropiles and ground behaviour has not been proven and no standard design is not yet available. Therefore, most design are performed based on previous experiences. In this study, the difference in the bearing capacity with changing reinforcement angle, space and sphere around foundation was monitored. These results were induced to broaden heighten the limits of micropile application.
-
The purpose of this paper is to study on the construction of roadbed with environmental friendly soil amendment agent. The special amendment agent used in this study is mainly composed of inorganic metal salts such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride,, thus is friendly to the environment, and has a function of soil-cement-agent solidification. Various components of this agent weaken the negative function of humic acid and decompose humic acid itself. Then, the calcium cation of the cement can now be made contact directly to the soil surface. The project of local road demonstration of roadbed construction with special soil treatment agent was peformed in Northeast Thailand on August 1999 by the sponsor of Highway Department of Thailand. A series of field experiments including unconfined compressive strength were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this solidifying agent. The results of this research showed that the roadbed using poor soil could be efficiently constructed by treatment of this amendment agent.
-
Model soil tank tests were conducted in sandy soil to investigate the effect of surcharge strip loads on vertical stress distribution in soil. A total number of 6 tests were performed using one loading plate and two relative density(55%, 65%). The soil was considered as an elastic material, while no friction was allowed between the wall and the soil. Measured stress values were compared to predictions defined by Frohlich, Boussinesq and Westergaard. The comparison of measured values and predictions used the ratio between the soil pressure and load value. Results of this study demonstrated that experimental values were generally larger than predictions. The Frohlich analysis provided the best prediction, while the Boussinesq analysis and Westergaard theory not presented a satisfactional result.
-
Steel piling for abutments of new and replacement bridges can be aesthetically attractive and cost effective. Use of embedded steel sheet piling brings savings in dead load, provides a compliant retaining wall, and permits speedier construction. In addition, for replacement bridge projects, traffic interruption can be minimized. It is hoped that this study will encourage designers and constructors to consider a steel substructure option more frequently during the conceptual and preliminary design phases of projects and thereby to take advantage of the Potential to construction more efficiently.
-
The domestic design method for the shaft resistance of drilled shafts into a bedrock Is based on the empirical method, where the uniaxial compressive strength of rock specimen is utilized for calculation of the shaft resistance. This method has uncertainties in prediction of capacity of drilled shafts and result in uneconomic engineering design. Recently a new improved design method was suggested, which reflects important factors that affect the strength of pile sockets. Socket roughness is one of significant factors influencing the shaft resistance of drilled shaft socketed into rock In this paper roughness information for the shaft resistance design of socket pile was suggested on the basis of statistical analysis of data measured from wall surface In the bore holes of drilled shafts.
-
In this paper the model tests have been conducted and the results are compared with those by the theoretical methods to study the behaviors of the piled raft. The size of model box is 2.2m
${\times}$ 2m${\times}$ 2m. The raft is made of rigid steel plate and piles made of steel pipes. Generally the bearing capacity of group piles is designed with only the pile capacities, and the bearing capacity of raft is ignored. But the uncertainty of pile-raft-soil interaction leads to conservative design ignoring the bearing effects of raft. In the case of considering the bearing capacity of raft, the simple sum of bearing capacity of raft and that of each pile cannot be the bearing capacity of piled raft. Because the pile-raft-soil interaction affects the behavior of piled raft. Thus the effects of pile-raft-soil interaction are very important in the optimal design. In this paper, the behaviors of piled raft are studied through model tests of 2${\times}$ 2, 2${\times}$ 3, and 3${\times}$ 3 pile groups. The spacing between piles is changed in the model tests. And the behaviors of free standing and piled raft are also studied. -
In this test, two separated oil jacks were placed at bottom of drilled shaft(D = 1,500mm, L = 33m), and maximum upward and downward load of 1,250 tonf was applied. Also, the deformable rod sensors were placed on each level, and axial strains at each level were measured. Because the side skin friction and the end bearing could be measured separately in the Osterberg type pile load test, this test might be more economical and more applicable than a conventional static pile load test. Thus, if this Osterberg type pile load test could be established during design stage, construction cost might be reduced and its application for large diameter pile could be enhance greatly.
-
The current practice of estimating bearing capacity usually employs the conventional bearing capacity formula originally developed for strip footings under vertical central loading, In order account for the effect of footing shape and eccentricity and inclination of loads, correction factors are introduced in the formula, which are derived based on a number of small-scale model test observations. In this paper, comparison of several formulations of bearing capacity factors, as well as values of these factors, are presented. And the conventional bearing capacity equations are compared with some of other failure loci proposed for cohesive soil. Also, the bearing capacity of shallow foundation estimated by the conventional bearing capacity equations are compared with the experimental load test results.
-
This paper studied the effects of inclination of piles on pile behaviors. The following are the conclusions of this study. (1) When all the piles are inclined to a same direction, the piles reaction, maximum moment and horizontal displacement of footing increase as the angle of inclination increases. (2) When the piles of each opposite side are inclined symmetrically, the vertical reaction either increases or decreases in proportion to the angle of inclination. In this case, the vertical reaction of inclined piles decreases but the vertical reaction of non-Inclined piles increases.
-
Talus topography is that rock clasts that is weathered is accumulated dropping in steep slope to action of gravity. Rock fall talus is formed by the accumulation of rock debris falling as individual particles from a cliff. If the collapse is produced in talus slope, it will be possible the loss of manpower and country. Despite correct access about talus is required, domestic research was scientific access about talus short. The aim of the present study is to review and compare fabric data derived from rock fall talus about orientation, distribution and morphology in Sukam area. These deposits tend to have approximately equal amounts of clasts oriented parallel and perpendicular to the dip direction of the slope. And, platy-shaped clasts dominate the proximal and intermediate parts of the talus, whereas blocky-shaped clasts is more common in the distal part.
-
Traditionally, the statistical methods analyze the relationship between landslide occurrence and related factors(soil depth, soil strength, slope angle, vegetation, etc.) in GIS technique. However, those methods have no mechanical meaning. Therefore, the deterministic model is suggested in this research. The method analyzes the mechanical equilibrium of a potential slide block and then calculates a slope safety factor. Since this method is able to consider the balance of forces applied to the slope and is a more reasonable method for an individual site. In this research, the spatial data is obtained, managed and analyzed using GIS technique. The infinite slope model is used to evaluate factor of safety and analyze the slope stability.
-
Sulfide minerals contacted with air and water in coal seam cause oxidation reactions. This oxidation reactions make low pH of groundwater and surface water(Acid Drainage). The reddish brown precipitate collected from the cut slope of the study area was estimated using the X-Ray Diffractometer(XRD). XRD results show that the cut slope was affected by Acid Drainage. The cut slope exposured to Acid Drainage become weak about chemical weathering and defile the appearance of the road. Drainage facilities are very important in Cut Slope under Acid Drainage influence. Reactions between Coal seam and water cause chemical weathering and environmental problem. Therefore It is important to control the transfer paths of groundwater and surface water and to install water collecting facilities
-
In this study, We peformed on the effective evaluation of slope berm construction using slope stability analysis programs. The effective evaluation of slope berm construction was performed by stability of slope and economy of construction. This time, used slope stability analysis programs are Talren97 that use Limit equilibrium method (LEM) and FLAC-SLOPE that use finite difference method (FDM), and carried out using Rocfall program to evaluate slope stability by rockfall occurrence.
-
In case of slope failure by planted protection is constructed on the slope according to of the choice trend of a recently environmental-friendly countermeasure, there has a limitation about diagnosis and preparation of measure. Also, collapse of tunnel pithead department slope has maximum in construction and countermeasure method of construction choice unlike cut-slope. In this study, analyzed inside circumstance of slope using geophysical exploration for stability analysis and countermeasure inside presentation of tunnel pithead department slope which collapse happens. geophysical exploration used dipole(Dipole-Dipole) method that is based to distribution principle does specific resistance, goes side by side with on-the-spot observation and draws base strength parameter and executed stability analysis, and presented stabilization countermeasure inside of collapse slope on this. I wish to conduce in development and research for use technical development of geophysical exploration technique hereafter by executing geophysical exploration in road collapse spot applying through this study.
-
The purpose of this study is to understand the sliding characteristics of the infilling-joint surface using the new devised shear test apparatus with changeable slope for the original infilling materials and the infilling materials experienced cyclic freezing-thawing processes. Three types of the mother rock classified as the igneous rock, the metamorphic rock and the sedimentary rock and the infilling materials were collected for laboratory test. The cohesion according to the slope change of the rock joint shows large variation within
${\pm}$ 5 degrees but the internal friction angle shows appears the linear decreasing tendency. It is confirmed that the affecting factor of slope change of rock joint at the behavior of rock mass is larger than that of the infilling thickness. Test results show that the cohesion and the internal friction angle in 100 times of cyclic freezing-thawing processes are decreased about 50 percent compared with original one. A further study using various infillings materials would lead to a better understanding of the failure mechanism of rock mass by slope change of rock joint. -
In this study, we peformed ahead a field geological investigation, boring investigation for slope stability analysis in large scale slope failure area. But the geological stratum was not clearly grasped, because ground was very disturbed by large scale Granite intrusion. Furthermore, the existing test data was not pertinent to the large scale Granite intrusion site like here. Therefore, various kind of field test were performed to grasp clearly for geological stratum. And the results of back analysis, various kind tests used to slope stability analysis.
-
Our country is serious difference of precipitation seasonally and about 66% of yearly mean rainfall is happening in concentration rainfall form between September on June. It requires consideration because of a lot of natural disasters by this downpour are produced. Slope failure is happened by artificial factor of creation of slope according to the land development, fill slope etc. and natural factor of rainfall, topography, nature of soil, soil quality, rock floor. Usually, Direct factor of failure slope is downpour. In this study, the Slope about among 55 places happened failure by downpour investigated occurrence position, geological etc and executed and inquire into character of rainfall connected with failure slope. Among character of rainfall, executed analysis about Max. hourly rainfall and cumulative rainfall of place that failure slope is situated and grasped the geological character of failure slope. Through this, inquire to character of failure slope by rainfall and take advantage of basis study for Hazard map creation.
-
A numerical comparison or predictions by limit equilibrium analysis and 3n analysis is presented for slope/pile system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a pile-reinforced slope according to shear strength reduction technique. The case of coupled analyses was performed for stabilizing piles in slope in which the pile response and slope stability are considered simultaneously and subsequently the factors of safety are compared to uncoupled analysis (limit equilibrium analysis) solution for a homogeneous slope. Based on a limited parametric study, it is shown that in the free-head condition the factor of safety in slope is more conservative for a coupled analysis than for an uncoupled analysis and a definitely larger value represents when piles are installed in the middle of the slopes and are restrained in the pile head.
-
In this study, a newly modified soil nailing technology called as the NDB(New Down and Board) soil nailing system is introduced. To improve the trafficability, workability, and economical efficiency, SMC(Sheet Molding Compound) board is adopted instead of using the concrete block facing. The SMC board has a distinct advantage of showing a fine view by directly coating with any kind of environmental photos. Composite material properties of the SMC board and cement grout are distinguished features of the NDB soil nailing system. In the present study, both laboratory tests(bending and punching failure tests) and field pull-out tests are carried out to analyze the behavior characteristics of the NDB soil nailing system, including the stress and strain distribution.
-
In domestic case occurrence of cut slopes according to construction and expansion of road is necessary more than 70% of country has been consisted of mountain area. In the case of Kang-won Do, there are much mountains locals in road wiping away a disgrace and expanded and slant is connoting collapse danger of incision side by each kind calamity being urgent. When route alteration enforces disadvantageous road extension, stability examination and processing way about large slope happened are serious. During road extension work in the Kang-won DO secure stability for falling rock of road slope and failure that happen and established suitable reinforcement and countermeasure in reply in necessity. The Slope is divided rock slope and soil slope, and then in order to analysis soil slope apply LEM theory. And rock slope examined stability about stereographic projection and wedge failure. Is going to utilize in reinforcement and failure prevention if it is efficient cutting as reinterpreting stability and secure stability and wish to consider effective and robust processing plan of great principle earth and sand side, and present countermeasure inside with these data hereafter applying suitable reinforcement countermeasure about unstable section.
-
Mass movement of anchored walls is defined and its characteristics were discussed. A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and used in practice. However, the behavior of an anchored wall can not be predicted well, if the locations of anchor bonded zone are near the wall. Mass movement is defined as the movement of anchor bonded zone due to the excavation without the change in the anchor load. Case histories of anchored walls were analyzed and the normalized mass movement chart were developed. This mass movement chart can provide the idea how to locate anchors to minimize the deflection of the wall. The further the anchor bonded zone is located from the wall, the less the movement of the wall due to excavation occurs.
-
For temporary excavation support in a congested urban area, the strand of ground anchor should be removed to get permission of the private land to install anchors. But the strand doesn't need to be removed in the outside city area after use. So the anchor body, tension anchor, is fabricated in-situ. The unbonded length of This anchor has several strands, which wrap only one sheath. When the anchor body is carried into job-site or installed in the bore hole, the sheath is torn easily because it is a very week material. So the grout permeate into the torn sheath. Because of that, the load doesn't transfer to the bond length of ground anchors. It may indicate that load is being transferred along the unbonded length and thus within the potential slip surface assumed for overall stability of the anchored system. The load tests were performed on seven low-pressure grouted anchors installed in weathered soil to verify its problems. Four anchors(Type A) have the unbonded length, which consist of five strands and a week sheath and three anchors(Type B) have strands, which is covered by plastic sheath filled with grease, in the unbonded length. Both anchors are compared with load tests results.
-
From the analytical standpoint, it is advantageous to consider the behavior of supported walls as plane strain condition. But supported walls constitute geotechnical problems which, in strut terms, are not plane strain cases. These represent differences between the measured and the predicted due to the stiffness and spacing of supported walls and the behavior of discontinuous walls such as solider beams with lagging. This study is to investigate simulations of a system behavior along a horizontal section of walls supported by prefabricated strut. Using a beam column method, relative effects associated with prefabricated strut stiffness and spacing in a systematic behavior were investigated.
-
The protection of adjacent structures in urban excavation has been an important issue. But the research on the interaction between ground movements and adjacent structure has been scarce, therefore this study was necessitated. Current design practice for the prediction of excavation-induced ground movements heavily rely on empirical method. In this study, damage levels of brick building are examined closely by means of angular distortion, deflection ratio, horizontal strain. The results of numerical analysis indicated that the movement of actual building was 60∼65% of the ground movement, while angular distortion was 45∼65%. Also numerical analysis for the assessment of brick building can be applied to the building protection at various construction stages.
-
Based on the equivalent uniform stress concept Presented by Seed and Idriss, sinusoidal cyclic loads which simplified earthquake loads have been applied in evaluating the liquefaction resistance strength experimentally. However, the liquefaction resistance strength of soil based on the equivalent uniform stress concept can not exactly reflect the dynamic characteristics of the irregular earthquake motion. The liquefaction assessment method which was invented by using the equivalent uniform stress concept is suitable for the severe earthquake region such as Japan or USA, so the proper method to Korea is needed. In this study, estimation of the resistance to liquefaction was conducted by applying real earthquake loading to the cyclic triaxial test. From the test results, the characteristics of the fine sand under moderate earthquake were analyzed and compared with the results under strong earthquakes. Typically real earthquake loads used in this study are divided into two types - impact type and vibration type. Furthermore, results of the liquefaction resistance strength based on the equivalent uniform stress concept and tile concept using real earthquake loading were compared.
-
This study investigated the modeling of dissolution Diesel to estimate the behavior of contaminants in the ground. The modeling based on the initial concentration change considering dissolution potential of pure Diesel and Xylene was performed using VISUAL MODFLOW, and was compared with general modeling ignored the initial concentration change condition.
-
The purpose of this paper is to investigate purification characteristic of soil-bentonite landfill liner and to develop of desirable liner system. In this study, column tests for soil-bentonite, reactive soil-bentonite and existing bentomat and reactive bentomat were carried out under the high pressure with water and leachate.
-
The special amendment agent used in this study is mainly composed of inorganic metal salts such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride, thus is friendly to the environment, and has a function of soil-cement-agent solidification. In this study, a series of laboratory and field experiments including unconfined compressive strength, permeability, pH test, constituent analysis, leaching test were carried out to analyse engineering and environmental characteristics of solidified sludge. The results of this research showed that the solidified sludge could be efficiently used in covering, filling, and planting materials.
-
In the soil washing process, the contaminants are usually removed by abrasion from soil particles using mechanical energy and water However, organic contaminants with low water solubility like polycyclic aromatic hydrocarbons (PAH) are remained on soil particles. Previous studies have shown that surfactant possessing amphipathic activity enhances the solubility of organic materials. For this reason solutions with surfactants have been used to improve removal of organic contaminants on soil washing process. But, in this manner, many problems were found like complete loss of surfactants and additional contamination by surfactant. The remediation method using microemulsion has been introduced to overcome these disadvantages. In this case, surfactants are recycled by phase separation of microemulsion after remediation. In microemulsion process, the surfactant will be recycled by phase separation of the microemulsion into a surfactant-rich aqueous phase and an oil phase after extraction. That is why remediation concept applying microemulsion as washing media has been Introduced. Suitable microemulsion have to be used in order to have the chance of refilling the soil after decontamination and to avoid any risk due to toxicity. The purpose of this research is to evaluate effect of microemulsion to remediation of contaminated soil. We performed test with various organic contaminants like Pyrene and BTEX, also compared efficiency of remediation in microemulsion process with soil washing
-
In this study, the performance of the cut-off wall with the specific functional adsorption layers(containing SAC), which are formed in order to block harmful materials such as heavy metal ions contained in leachate (or outflow water) from either waste landfills or exhausted mines, was Investigated by determining experimental data such as hydraulic conductivities, unconfined compression strengths, adsorption capacities. The performance was compare to those of the present cut-off wall materials such as clay, bentonite-mixed soil, and soil-cement.
-
This study investigated the effect of ultrasound on the permeability of the granular soil. The investigation laboratory experiments, and laboratory tests were conducted under a broad range of conditions including energy levels of ultrasonic waves, time for the treatment, and type of the soil. The results of the study show that sonication enhances the permeability of the soil specimens significantly. The degree of varies with sonication power and duration of application, and type of soil.
-
To prevent the percolation of leachate through the bottom of waste landfills, the liner system of various layers, such as compacted clay, geomembrane, geonet, geotextiles, and geocomposite is designed. Since the friction angle between a geomembrane and other geosynthetics is usually lower than that of the soil alone, the interfaces between soil and geosynthetic or geosynthetic-geosynthetic may become a possible plane of weakness, which leads to potential instability of the system under load of waste at side slopes. In this study, large triaxial tests are carried out with samples of remoulded wastes and direct shear interface friction tests are carried out to understand the frictional properties of geosynthetic-geosynthetic interfaces, which are required for analyzing the safety of side-slope liner systems.
-
본 연구에서는 대표적인 산업부산물인 굴패각과 플라이애쉬를 활용한 흡착제를 개발하여 중금속 이온의 제거 기작을 평가하였다. 1차적으로 연구된 중금속 이온은 카드뮴, 납, 구리이며, 산업부산물을 활용하여 흡착특성을 평가하였고, 동시에 현장 적용성을 모사하기 위해 점성토와 화강풍화토에 대한 흡착실험도 함께 수행하여 각각의 흡착특성을 비교ㆍ평가하였다. 실험 결과를 등온흡착식으로 분석하여본 결과 굴패각의 경우 카드뮴, 납, 구리이온의 용액 내 제거율이 해성점토나 화강풍화토를 사용한 흡착제에 비해 우수하므로 흡착제로서의 사용 가능성을 확인할 수 있었다.
-
Electrokinetic characteristic of natural soil dependent on flushing agents is studied to determine the best agent used in the hybrid electrokinetic remediation system. The soil containing 7.6% Fe
$_2$ O$_3$ is spiked with lead. The flushing agents to be inject into anode are HCl, Acetic acid, Citric acid, EDTA and SDS. Test results showed that the early electrical potential of EDTA is lower than the value of the others. And the pH in anode reservoir is higher. Elcetrokinetic characteristic of all the sample except for EDTA is about the same. -
In this study, a series of electrokinetic(EK) remediation experiments are carried out under the different degree of saturation for contaminated soil with lead. for constant electrical potential, the final current of all the sample represents the similarity to steady-state value of 5∼7mA. Under conditions of all the degree of saturation the anode reservoir becomes acidic(pH as low as 3) while the cathode reservoir is basic(pH as high as 12). But pH changes in the sample is a little and decontamination efficiency is the low.
-
This study investigated the effect of ultrasound on the permeability of the filter paper The investigation involves laboratory experiments, and the laboratory tests were conducted under abroad range of conditions Including energy levels of ultrasonic waves, time for treatment, and temperature. The results of the study show that sonication enhances the permeability of the filter paper significantly. The degree of enhancement varies with sonication power and duration of application. The effect of sonication on permeability with temperature variation and concentration of the test specimens seems not to be significant.
-
Slope stability is an important issue ill civil engineering works or in open pit mines where both economy and efficiency is required. These are the long-term stability problems which depend on the change of physical properties under a certain weather condition. These can also result in progress of weathering which can change mechanical or hydro-geological properties of rock mass considerably. In this study, weathering in nature was simulated by freeze-thaw test and Soxhlet test which represent mechanical and chemical weathering respectively. Measured were elastic wave velocities, absorption rate, volume change. Uniaxial compression strengths before and after the weathering tests were also measured. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities were clearly decreased as weathering progresses. For some class of rocks, P-wave velocity was increased probably because of the saturation due to improved connectivity of the pre-existing pores. Based on the test results, stability of the slopes were analyzed using FLAC
$\^$ 2D/. Due to the reduced strength parameters, the factors of safety were decreased for the selected sites. -
Urban tunnelling need to consider not only the stability of tunnel itself but also the ground movement regarding adjacent structures. This paper present 3-D behavior of adjacent structures due to tunnelling induced ground movements by means of field measuring data and nonlinear FEM tunnel analysis. The results of the analytical methods from Mohr-Coulomb model are compared with the site measurement data obtained during the twin tunnel construction. It was found that the location and stiffness of the structure influence greatly the shape and pattern of settlement trough. The settlement trough for Greenfield condition was different from the trough for existing adjacent structures. Therefore the load and stiffness of adjacent structures should be taken into account for the stability analysis of the structures.
-
The accuracy of inflow into tunnel estimates depends largely on how well permeability is characterized. But, the average of the packer test results will always underestimate the upper end of the permeability range, and therefore underestimate the inflow. Taking an average of the test results always underestimates inflow because the average permeability does not really exist. The distribution of packer-test data may not accurately reflect permeability, however, due to the limits of the test method and the luck of the field investigation. These discrepancies may be overcome by using Raymer(2001)'s log-normal plots and Heuer(1995)'s histograms of the data to develop a permeability model that will be used in lieu of the data to calculate inflow. Furthermore, the influence on the inflow is examined by the geological characteristics based upon the hundred times of packer test OO tunnel project.
-
Rock damage induced by blasting can not be avoided during tunnel construction and may affect tunnel stability. But the mutual interaction between tunnel blasting design and tunnel stability design is generally not considered. Therefore this study propose a methodology to take into considration the results of the blasting damage in tunnel stability design. Rock damage is evaluated by dynamic numerical analysis for the most common blasting pattern adopted in road tunnel. Damage zone is determined by using the continuum damage model which is expressed as a function of volumetric strain. And the damage effect is taken into account by the damaged rock stiffness and the damaged failure criteria in tunnel stability assessment. The extend of plastic zone and deformation increase compared to the case of not considering blast-induced rock damage.
-
In this study, ordinary portland cement, slag cement and micro cement which have been used in the construction fields were evaluated for the environmental effects and compression strength characteristics for curing solution. To find the leaching of C
$r^{6+}$ characteristics in cement grouts, C$r^{6+}$ content tests were performed for the raw materials(cement powder). In addition, C$r^{6+}$ leaching tests were peformed for the homo-gel samples according to change of pH and each curing solution with the deionized water and leachate. Then, the unconfined compression strength tests were peformed with the homo-gel samples and the amount of changed C$r^{6+}$ was measured by curing solution. -
The SASW method is a promising and effective way of profiling ground stiffness nondestructively. This method has been successfully applied to many geotechnical sites, but significant lateral variability, embedded obstacles, and pavement lead to the low reliability. To improve these problems, the horizontal wave component has been introduced to improve the reliability of the stiffness profile determined by the SASW method. To understand dispersion character of the horizontal component wave propagation in artificial profiles, FEM analysis had been performed. Used models are homogeneous half-space and two layered half- spaced layers.
-
Recently, piezocone penetration test is frequently conformed in order to estimate the characteristics of soft ground with standard penetration test, generally used in the past. The soil characteristics, such as cone penetration resistance, friction resistence and excessive pore water pressure, can be evaluated continuously through the piezocone penetration test. In Incheon International Airport 2nd phase site preparation, standard penetration test and piezocone penetration test were used in order to increase the confidence for determination of soft ground depth. And the compressible layer was determined by the comparison between the preconsolidation pressure and the designed increase pressure. As the results, the relation between standard penetration test and piezocone penetration test shows q
$_{c}$ =(1.09~l.63)N at the soft ground, determined by 5/30 N value. And q$_{c}$ =(1.21~l.98)N was shown at the point of compressible layer, evaluated by the preconsolidation pressure. These results were applied to determination for the depth of soft ground and to design the improvement for the soft clay.lay. -
Flexible pipes (corrugated polyethylene pipes) are normally used for underground power distribution grids. In this paper, dynamic analysis was carried out through FEM in order to investigate the structural behaviour of pipes subjected to seismic loads. The burial depth and the number of pipes were major parameters in the numerical analysis to determine the response of pipes. The results show that the displacement of pipes under given conditions are all satisfactory in comparison of the allowable strain criteria -maximum 3.5 %.
-
Although sand compaction pile is applied considerably for increase of hearing capacity in domestic, it is getting more necessary to develope the alternative materials because of exhaustion and increase of unit cost of sand. In this study, stress concentration ratio between crushed-stone pile and soft ground was measured and, a displacement ratio 30, 40 and 50%, variation of stress concentration ratio was analyzed. As an increase displacement ratio, the stress concentration effect of crushed-stone compaction pile doesn't increase proportionally and effect of ground improvement in case of ground was good at displacement ratio 30% or 40%. The stress concentration ratio of crushed-stone compaction pile in group piles is 1.5 times that of crushed-stone compaction pile in single pile.
-
It was achieved that Rowecell test for this undisturbed sample was picked by Block sampler(
$\phi$ :250mm, L:500mm) and hydraulic piston sampler($\phi$ :76mm, L:850mm) in the marine clay of YONGYUDO and YEONGJONGDO in this research. Ratio of coefficient of consolidation was analyzed through comparison with C$\_$ h/ by CPTu and C$\_$ v/ and C$\_$ h/ by existent consolidation test. According to analysis, coefficient of consolidation of block sample is fairly greater than coefficient of consolidation of piston sample. And the bigger diameter of undisturbed sample, sample disturbance could know decreasing. Coefficient of consolidation by Rowecell test measured more greatly than coefficient of consolidation by existent consolidation test. Rowecell test could know decreasing consolidation rate because of smear effect by Mandrel injection. Also, C$\_$ h/ by CPTu shows deviation by each analysis method, selection of suitable analysis method judged by important leading in the coefficient of consolidation. -
When SCP (Sand Compaction Pile) is used in the improvement of soft ground, some problems like the difficulty of vertical construction and other construction difficulties due to the use of high pressure are encountered, There is a possibility that the strength parameters used in the design may be different with those obtained from the investigation of the quality variation with depth for the irregular, then the section may be not a sand pile but a combination of sand and clay. The mixture ratio concept is used, it is defined as the quantity of sand corresponding to the replacement ratio. Using this concept, the strength parameter relationship of the replacement and mixture ratio was determined. The use of these parameters in the design of SCP is most appropriate.
-
The foundation of Noksan area is composed of consolidified sediments including clay mineral, quartz, plagioclase and calcite. The mineral compositions vary dependent on the depth. That is, at the depth of 0-15 meters quartz and plagioclase are more abundant than clay mineral, at the depth of 17-39 meters clay minerals and calcite are more than quartz and plagioclase, at the depth deeper than 40 meters, the amounts of quartz and plagioclase increase slightly and that of clay minerals decrease. Clay minerals of the clayey sediments include illite, smectite, kaolinite and chlorite. At the depth 17-39 meters smectite is abundant and kaolinite is little relatively The pH of suspension is various between 3-9 and decrease to 3-5 at the depth deeper than 40 meters. The result of soil test of clay sediments, water content shows that liquid limit, plastic limit, particle size, unconfined compressive strength varies depending on the depth. The variation of mineralogical, geochemical, engineering properties of soil with the depth are probably due the differing sediments of different sedimentary environment. That is, these variations are considered to be correlated with the sedimentary environment change resulting from the change from continental environment to ocean environment due to the transgression of the interglacial period after the regression the latest glacial period.
-
This study was carried out to understand the stratigraphy and depositional environment of clayey soils that distributed in the Gadeok-do area, Kimhae plain (Nakdong estuary). For the study, SPT core sampling and magnetic susceptibility analysis were conducted. Soils in study area is classified into five sedimentary facies ascending order; sand/gravel. clay, sand/gravel, clay, interbedded sand and silty clay. Analysis of magnetic susceptibility for Gadeok-do clayey soil reveals that depositional process and environment can be divided into upper, middle and lower layer, and they are closely related to the sea level change since late Quaternary.
-
An existing studies concern about movement of pile bridge abutments. However, lateral displacement cause the serious failure of bridge by embankment under soft soil lateral flow A intention is obtained by analyzing the relationship between the safety factor of evaluation for lateral movements. Precise investigation and analysis are performed, in which the lateral movement of bridge abutments has occurred, and construct design strut-slab between bridge abutments in order to restraint lateral flow. As a result of this study, it was found that when evaluation for lateral movements is allowed to use Tschebotarioff's method and lateral flow decision number (I) and revision lateral flow decision number (M
$_{I}$ ) by Korea Highway Corporation. Most important thing is decision of pressure of lateral flow at this case. Tschebotarioff's isoscales triangle method have no trouble analysis of pressure of lateral flow. Strut-slab method are nearly not have constructed case in this field site study that applied method. The method are between abutments combined steel strut and reinforced concrete slab. This method are effective restraint lateral flow but have little difficulty if long span bridge between abutments.s. -
In environmental and economical views Plastic Board Drain(PBD) has many problems which is generally used in improving soft grounds. In order to improve these, Rags drain and Sponge drain are developed in this study, and the application to drains is presented though comparing with PDB and Sand drain In consolidation effects. Test results show that the consolidation effects, including consolidation rate and stregth, increase in order of Sand and Rags, PDB and Sponge drain.
-
The clay which transported into a pond under the high water content condition have no effective stress which develop from the starting point of sedimentation and self-weight consolidation. Since sedimentation and self-weight consolidation dependent on self-weight of solids is made progress over a long time, to accelerating it have many advantages in the economic view In this paper, sand spreading method which is one of sedimentation and self-weight consolidation acceleration method is studied through a series of experiments considering the mixing ratio of sand and clay. The test results show that the mixing ratio of clay and sand of 1:0.2 is the biggest rate of consolidation and the pouring at the end point of sedimentation considerably effects on consolidation rate.
-
The characteristics of soft clays is very important for the land development plan. This study is to investigate correlations between the engineering properties and the characteristics of clay minerals of the disturbed clay samples obtained from Sihwa area. This study included X-Ray Diffraction Analysis, X-Ray Fluorescence Spectrometer Analysis, Scanning Electron Microscopy Analysis and Energy Dispersive X-Ray Spectrometer Analysis. The correlations between the clay mineral properties and the laboratory and field testing results were investigated.
-
It is an essential process to predict behaviors of ground and structure to seek economical efficiency and stability on the given environment. Predictions are conducted through analysis process of ground and structure. For these analyses, exact and quick acquisition of measuring data is required. But we face many difficulties in data acquisition stages due to the conditions of construction site. Therefore development of a powerful and effective monitoring system that can manage the integration of database and the implementation of measuring process in real time is strongly desired. This article shows an actual example of application of internet based monitoring system compared with the conventional monitoring system.
-
A reliability analysis is performed to investigate the influence of the uncertainty from the limited in-situ samples and the inherent heterogeneity of the ground on the probability of piping for the marine embankment near shore. The result are compared with those of the deterministic piping stability analysis performed using the fininte element flow analysis. The random variables used are hydraulic conductivity of the ground subsurface and embankment, and the water level of both internal and external side of the embankment. The probability of piping is most sensitive to the mean and standard deviation of internal water level of the embankment among the random variables included in the reliability analysis. It is found that the lower limits of internal water level which satisfies the allowable proability of piping failure for the embankment studied were E.L(-) 1.83m and E.L(-) 1.48m during and after the construction of the embankment, respectively.
-
본 연구에서는 진동대 실험을 실시하여 매립지에서 널리 사용되고 있는 지오멤브레인과 지오텍스타일 사이의 동적 접촉 마찰 특성을 살펴보았다. 연직응력, 진동 주파수, 건조/수침 상태의 영향에 대해서 평가하였으며, 또한 지오멤브레인과 지오텍스타일 사이의 상대적인 미끄러짐의 정도를 측정하였다. 실험 결과, 지오멤브레인과 지오텍스타일 사이를 통해 전달되는 한계 가속도(limited acceleration)가 있음을 확인할 수 있었으며, 이를 통해 지오멤브레인과 지오텍스타일 사이의 동적 접촉 마찰각을 산정할 수 있었다. 이러한 가속도는 수침상태의 경우 건조상태보다 더 작게 산정되었으며, 변위의 경우 수침상태에서 더 크게 발생함을 관찰하였다. 또한 실험조건에 따라 지오멤브레인과 지오텍스타일 사이에 발생하는 상대적인 미끄러짐의 정도가 다르게 측정되었다. 본 연구에서는 지오멤브레인과 지오텍스타일 사이의 slip equation을 제안하였으며, 이 식을 통해 주어진 가속도와 주파수에서 지오멤브레인과 지오텍스타일 사이를 따라 발생되는 최대 미끄러짐의 정도를 예측 가능하게 하였다.
-
The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.
-
The shear friction tests using large direct shear test units were performed to evaluate the friction properties of fiber-mixed soil. The used materials and test conditions were flowing. Soils : SM and ML; mixing fibers : three types of polypropylene fibers(net type 38mm and 60mm, and line type 60mm), reinforcement : geogrid; mixing ratio:0.2% and 0.3%; degree of compaction : 85% and 95%. In the test results, the reinforcing effect of fiber mixed soil was confirmed.
-
Laboratory experiments were peformed to understand physical properties of soil-cement column under the influence of acidic flow including metal contaminants and its retaining capacity against metal migration. The contaminant used in this study was nitric acid with Cu and Cd. The Permeability of soil-cement column decreased when pH of the column began to drop below 12. Decreases in pH led to significant reduction of compressive strength of clayey soil-cement specimen, while relatively marginal reduction for sandy soil-cement specimen. The metal contaminants did not leachate from soil-cement column until pH of soil-cement dropped below 7∼8 for Cu and 9∼10 for Cd. Metal contaminants were precipitated and trapped inside the soil-cement column at pHs higher than those mentioned as verified with metal analysis and visual inspection. This indicated that soil-cement column not only performs well as a cut-off wall, but also helps alleviating the level of contamination of the surrounding environment.
-
This study presented the reinforcing effect of sands by using newly devised 3D Tirecell. Plate loading tests for sand were conducted for different relative density and number of reinforced layers. From the tests, the ultimate bearing capacity of reinforced sand increased with increasing relative densities. The effect of reinforced layers with 0.4B interval is limited to 2 layers and further reinforcing effects can not be obtained beyond 3 layers. Especially the bearing capacity increased remarkably at 1 layer of Tirecell reinforcement and the degree of increase was small for 1 layer to 2 layers increase of reinforcement. Test results show that the reinforcing effect of Tirecell is prominent compared with commercial geocell in the literature.
-
The stability of structure, effectiveness of design and construction are very important factors in soil-structure design. The design-parameter is based on the test through laboratory-test and field-test. There are two ways to obtain the design-parameter. One is to through test, and the other is through relative documents and references. Recently, statistics has been used to get reliable data. In this study, Kriging method as Geostatistics and the theory of Bayesian's inference are used and the design-parameters are obtained. As the result of this study to the design-parameter is reliable and information about soil condition and soil properties in design and construction is easily found.
-
The purpose of this paper is to present and discuss some of harbor foundation constructed on seashore soft ground by Deep Wing Mixing in deep mixing method. A series of laboratory and field experiments including unconfined compressive strength, permeability, geo-physical survey, sea water concentration, lateral and settlement measurement, field core sample were carried out to check physical, mechanical and environmental characteristics of solidified foundation soil treated by HWS solidifying agent. The results from this research showed that Deep Wing Mixing method could be efficiently applied in the construction site of seashore structure foundation.
-
The purpose of this paper is to develop the new deep mixing method installed automatic control equipments for the better construction in deep mixing and grouting. Civil, geotechnical, electronic, and communication experts have worked together for a long time for the development of automatic measuring devices using wire and wireless transmitting-receiving set. A series of laboratory and field experiments were carried out to check the reliability and field applicability of this system. New total automatic control system including automatic devices for checking angle, depth and quantity of injected grout was invented from the result of this research.
-
Relationship between axial strain and volumetric strain of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit weight and also increase compressive strength. For this purpose. the triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and curing stresses, The test results of LWFS Indicated that the axial strain - volumetric strain relationship is almost linearity with increase cement contents and the unit weight but the relationship is non-linearity with decrease cement contents and the unit weight. In this study, it is found that assuming no change of cross section area of LWFS, axial strain occurring the poisson's ratio of zero, that the axial strain same to volumetric strain, steeply increases with decrease the unit weight, initial water content, and cement contents.
-
While coarse geomaterials with abundant fine particles are common, comparatively little information is available to know their engineering behaviour. In this study, the effects of fine particle content of coarse geomaterials on engineering properties, such as shear strength, deformability and permeability were investigated. It was known through large triaxial compression tests that when they are compared with good rock materials, the rock materials with abundant fine particles have different compaction characteristics, low shear strength, low stiffness, and low permeability.
-
섬유보강재를 이용한 성토제체의 설계에서 기존의 방법은 보강재의 변형을 무시하고 흙의 변형만을 중요시하고 있다. 보강재에 의해 보강된 성토제체의 파괴면에서 보강재와 흙의 거동은 초기응력단계에서는 일체거동현상을 나타내지만 응력의 증가에 따라 변형량에서 차이를 보인다. 이러한 문제는 토공구조물의 보강재를 설계하는데 있어서 중요한 요소로서 보강효과에 큰 영향을 미칠 수 있다. 본 연구에서는 연약지반 위에 PET Mat로 보강하여 축조한 성토제체에서 보강재와 흙의 응력 - 변형거동을 수치해석을 통하여 분석하였다. 연구결과, 파괴면에서 보강재의 변형은 보강재의 인장강도 크기에 따라 큰 차이를 보이고 있다. 외부하중에 의해 보강재에 발생하는 최대응력은 보강재의 항복인장강도를 초과하지 않으며, 보강재에 발생하는 응력이 성토체에서 발생하는 응력이상일 때 이상적인 것으로 나타났다. 또한 제체의 전단파괴에 대한 안전율은 보강재의 항복인장강도가 증가할수록 증가하는데 보강재와 흙의 변형이 일치되는 이후부터는 안전율의 증가율은 거의 미미한 것으로 나타났다.
-
Slurry clay has much higher water content than liquid limit of clay and even if small loads apply, it suffers a great settlement. Accordingly it is very difficult to perform a general consolidation test about slurry clay because of high water content. In this study consolidation tests have been performed successfully using Rowe Cell Tester about 1 remolding clay and 3 slurry clays with a water content of 100%, 133% and 150%. From the test results compression index characteristics, secondary compression index characteristics and consolidation coefficient characteristics have been investigated about slurry clay and remolding clay. Also two kinds of theory, by Terzaghi theory and by Mikasa theory, has been used to calculate consolidation coefficients. Compared to the calculation results, they had a similar value of consolidation coefficient. However if Mikasa theory is applied in the field design, the period which reach to the required consolidation degree will be much reduced compared to the period by Terzaghi theory because the time coefficient T
$\_$ v/ by Mikasa theory is far smaller than T$\_$ v/ by Terzaghi theory. -
이 논문는 지오신텍스 보강토 구조물의 보강 메카니즘을 수치계산을 통해 규명하고자 하는 목적으로 쓰여졌다. 이 연구에서는 보강 메카니즘은 전단에 의한 다짐토의 체적 팽창(부의 다일렌탄시)을 지오신텍티스에 의해 구속 억제하는 과정에서 생성되는 효과로 간주하고 있다. 보강 메카니즘의 규명을 위해 1992년 일본 Kanazawa에서 실시된 실모형 실험과 실내 실험 결과를 이용하였으며. 수치계산에서는 다짐토의 다일렌탄시 특성을 표현 가능한 탄소성 구성모델을 이용하여 유한요소(FEM)을 이용하고 있다. 수치 계산에 의해 실모형, 실험 실내실험 결과를 비교 분석하였다.