한국태양에너지학회:학술대회논문집
The Korean Solar Energy Society (KSES)
- Semi Annual
Domain
- Energy/Resources > New and Renewable Energy
2008.11a
-
In this paper, we introduce the status of concentration photovoltaic system. Currently, crystalline silicon solar has 90% of total solar market. But in a few years, the concentration solar system is expected to be main one because cost increasement of silicon material is not stabilized unit now. At 2012, it will take 5% of the whole solar market. Less expensive, material requirement and high system efficiency give high driving force for intensive research on concentration system. It is time for us to initiate the basic study and evaluate the long term stability compared to crystalline silicon system. The detail discussion will be shown in the following paper.
-
Economic assessment of solar thermal power generation systems was carried out by calculating the levelized electricity cost. Four different commercial (or near commercial) solar thermal power systems (parabolic trough system, power tower system with saturated steam, power tower system with molten salts, and dish-stilting system) were considered for assessment. The assessment also included sensitivity analysis covering the effects of system capacity, direct normal insolation, and the system efficiency.
-
The purpose of EVA sheet in PV module is to bond or laminate the multiple layers of a module. We studied the influence of EVA sheet gel content on photovoltaic module durability. Gel Content was measured by manufacturing Glass/EVA Sheet/Back Sheet scheme at several curing temperature. Through this experiment, we could confirm that there are changes on Gel Content of EVA Sheet. The transmittance of
$140^{\circ}C$ /4min process condition was more excellent than the other condition at ultraviolet wavelength range. The thermal stability of$150^{\circ}C$ /4min process condition was higher than the other condition. -
In this paper, we study The Effects of PV Cell's Electrical Characteristics for PV Module Application. Photovoltaic module consists of serially connected solar cell which has low open circuit voltage and high short circuit current characteristics. The whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and Random. The PV module exposed about 35days, its the maximum power drop ratio was 4.282% minimum and 6.657% maximum. And PV module of low current characteristics has electrical stress from other modules. The solar cell temperature of PV module was higher compared to PV cell. To prevent early degradation, it is need to have attention to PV cell selection.
-
In this paper, we analyze the electrical characteristics of PV depending on distance among solar cells before and after lamination process. From the result, the PV module's maximum power increases about 3.37% when solar cells's distance is 10mm. And the maximum power increases up to 8.42% when solar cells's maximum distance is 50mm. It is assumed that PV module's surface temperature decreases because of increasing distance between solar cells that would give high power generation. Also, short distance between solar cell and frame result in contamination on glass. When considering reduced maximum power caused by contaminant, from that. we can fabricated PV module of lower cost with high performance.
-
The photovoltaic modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This paper presents that the PV module temperature can be estimated by using thermal analysis programs, and demonstrates the thermal characteristics of the PV module.
-
A photovoltaic panel is a device that, through the photovoltaic effect, converts luminous energy into electric energy. Photovoltaic generation system used infinity of solar energy, cost of fuel is needless and there in no air pollution or waste occurrence. This paper summarizes the results of these efforts by offering a photovoltaic system structure in 30[kW] large scale applications installed in Mokpo National University dormitory roof. The status of photovoltaic system components, are inter-connection and safety equipment monitoring system will be summarized as this article. This describes configuration of utility interactive photovoltaic system which generated power supply for dormitory. In this paper represent 30[kW] utility photovoltaic system examination result.
-
Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially the installation condition should be considered, for the generation performance of PV module is changed or the generation loss is appeared according to installation position, method, and etc. This study investigates variation of electrical characteristics of a PV module according to the change of irradiance and temperature. From this experimental study, we confirmed that the irradiance, the temperature variation and the generation performance of a PV module were appeared differently according seasonal variation. Actually the PV module installed in building facade showed high-generation performance in winter.
-
Efforts tp overcome the current challenge of global warming and abnormal temperature are being taken around the world. According to a report, average temperature of Korea has increased by about
$0.8^{\circ}C$ for a century. In particular, temperature has rapidly increased since year 2000. Climate changes have brought remarkable changes in our lives. For example, agricultural field will see changes in crops and production. Energy used to maintain and manage architectures will be changed as well. In order to actively cope with rapidly changing global climate which drives changes from the basic behavior of our lives to subtle changes, international cooperation and researches are performed around the word. For instance, as a part of these global efforts, research on typical meterological data for computer simulation program to evaluate architecture energy performance is in progress in Korea. In order to conduct research on typical meterological data in format of data per time, reference regarding monthly maximum/minimum temperature time is required. Unfortunately, however, reference regarding maximum/minimum temperature time hasn't been defined in Korea. Therefore, this study aims to provide fundamental data essential for various researches by calculating maximum/minimum temperature time of major cities across Korea. According to the study, maximum temperature occurs at 3 p.m and minimum temperature occurs at 5 a.m or 6 a.m. respectively, in overall areas. -
This study is to analyze and compare on the sky condition of cloud amount and measured solar horizontal irradiation in Seoul. Sky cover method is determination of sky condition used by cloud amount of the Meteorological Administration. And HCI method is determination of sky condition used by measured solar horizontal irradiation. The HCI methods of Erbs et al.(1982), Orgill and Hollands(1977) appear a lot of error because of the air pollution such as smog phenomenon or yellow sand phenomenon and so on. Therefore, The purpose of this study is to improve the method for determination of sky condition.
-
Recently, Energy savings in buildings has received much attention in response to the increased needs for global warming and better comforts of the occupants in apartment housing. This study proposes the method which uses the sun control window film to reduce the cooling load and heating load improving the thermal performance of the building and it improves an energy efficiency. The film which used in actual measurement has a low shading coefficient and a solar energy transmission. so we measured the surface temperature of the triple Low-e glazing system used and inside temperature according to the change of outside temperature and solar energy to study thermal performance evaluation. As a result, it was helpful to use window film insulation to reduce inside temperature in summer and to keep room warm in winter.
-
This paper discussed the validity of wind force power generation in consideration of the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind velocity, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was higher at wind power plants installed in southwestern coastal areas where wind velocity was low than at those installed in mountain areas in Gangwondo where wind velocity was high. This suggests that the shape parameter of wind distribution is low due to the characteristics of mountain areas. and the standard deviation of wind velocity is large due to the effect of mountain winds, and therefore, actual generation is low in mountain areas although wind velocity is high.
-
This study carried out field observations of measuring thermal environment, especially evaluating amount of water evaporation at roof Pond by field observations during the summer. Thermal environment measuring was categorized as air temperature, water temperature of roof pond, surface temperature, globe temperature, short and long wave radiation, net radiation, and amount of water evaporation by water level measurement. Results from this study could be used as fundamental for reducing heat Island phenomena.
-
An SHGC(Solar Heat Gain Coefficient) is a determinant of total flux of solar radiation coming indoor and a critical factor in evaluating heating and cooling load. U-value represents heat loss while SHGC denominates heat gain. Recently, windows with high solar gain, mid solar gain or low solar gain are being produced with the development of Low-E coating technology. This study evaluated changes in energy consumption for heating and cooling according to changes in SHGC when using double-layered Low-E glass and triple layered Low-E glass in relation to double layered clear glass as base glass. An Office was chosen for the evaluation. For deriving optical properties of each window, WINDOW 5 by LBNL, an U.S. based company. and the results were analyzed to evaluate performance of heat and cooling energy on anannual basis using ESP-r, an energy interpretation program. Compared to the energy consumption of the double layered clear glass, the double layered Low-E glass with high solar gain consumed
$69.5kWh/m^2,yr$ , 9% more than the double layered clear glass in cooling energy. The one with mid solar gain consumed$63.1kWh/m^2,yr$ , 1% less than the base glass while the one with low solar gain consumed$57.6kWh/m^2,yr$ , 10% less than the base glass. When it comes to tripled layered glass, the ones with high solar showed 2% of increase respectively while the one with mid solar gain and low solar gain resulted 5% and 11% in decrease in energy consumption due to low acquisition of solar radiation. With respect to cooling energy. it was found that the lower the SHGC. the less energy consumption becomes. -
For centuries now, wind tunnels have been a key element in scientific research in a number of fields. Experimenting with racecars, airplanes, weather patterns, birds, and various other areas has been made much easier because of its development. In the racing field, for example, the information gathered from this testing can mean the difference between winning and losing a race. Weather simulations can also provide valuable information regarding building stability and safety. This has become very important when designing buildings today. Valuable information concerning bird flight has also been collected based on wind tunnel testing. Wind tunnels have a variety of important uses in the world today. Wind tunnel that used here is an open loop low speed wind tunnel. The fundamental principles of this tunnel is moving the air using exhaust fan In the rear side, and placing the cube in the external balance system which used to measure the working force. This experiment is using 50mm cube of finished wood. From this experiment we can get Drag Force (FD), The Reynolds Number (Re) and The Coefficient of Brae (CD).
-
One of the most popular internal combustion engines is the engine in the transportation device. Power is a parameter that shows the capabilities of an object that gives energy, for example the internal combustion engine. Power in this engine is measured by a device called dynamometer. The CFD (Computational Fluid Dynamic) fluent software was simulated several impeller variables to absorb power of engine. With that result, we knew the biggest dynamometer absorber power, cheapest and easy to be made. The hydraulic dynamometer is selected type of dynamometer as the result of design process. The basic principle of a hydraulic dynamometer is the same as centrifugal pump but it has low pump efficiency. The results of the test are maximum power and torque of the tested engine and the operation area of the selected hydraulic dynamometer.
-
In order to ensure building energy management at an appropriate level continuously, it is necessary to define clearly service work of energy management and to suggest evaluation index whether energy management in buildings is fit and improvement is needed or not. But, evaluation index of energy management level in buildings is not suggested yet in Korea. So, the purpose of this paper is to suggest evaluation index of energy management level in buildings, investigate the present state of Korean buildings and evaluate energy management levels. As a result of surveys of evaluation index of energy management, it is found that portion of level 1, which is the best level, is higher than any other level, level 2, level 3. And, throughout analysis, it is found that as total floor area is larger, evaluation index of energy management level is better, and, in order to increase energy management level, first of all, there is necessary for building's users to change understanding about energy saving and make a reform of national policy of energy management in buildings. Because there is rich relationship between items among evaluation index of this stuff and result value of evaluation index, evaluation index of energy management suggested in this study is available to evaluate energy management level in buildings.
-
Many countries are faced with problems of energy demand and environmentally. Renewable energy is the interesting solution to deal this problems. In Korea, it is planed to apply the renewable energy to 5% of total energy demand by 2011. For this, the government has supported by various promotion program of renewable energy Policy Consideration of renewable energy system is essential for sustainable urban regeneration. Renewable energy application will be possible to make friendly environmental and sustainable city and deal with the energy and environment problem. This study will provide fundamental data to applying renewable energy systems for urban generation. There are evaluated for economic feasibility of renewable energy systems and analyzed application of them by building type as a urban energy source.
-
The large buildings in Korea usually use the generators to control the peak load of electronic consumption during the summer. It is necessary that these generators emit carbon dioxide, since they use gas or gasoline for their fuel. This study is to analyze the data of electronic consumption and operation of the generators at COEX, one of the representative complex building clusters in Korea, and to compare to the amount of carbon dioxide emitted per 1kWh from the domestic power plant by analogizing the frequency of using the generator during the summer and the amount of fuel consumption by the capacity of the generator and estimating the amount of carbon dioxide emitted from the generator.
-
Recently, the whole world is concerned about the saving energy and protective environment, so interest is increasing in new and renewable energy. Specially the Bioenergy continuity is possible, the research is advanced by the energy which it contributes in environmental conservation. From the research which it sees consequently it investigates about co-generation system of domestic bio-energy, it is used to analyze the electricity and heat energy of buildings that Energy Consumption Survey of Korea Energy Management Corporation and food waste generation quantity of Ministry of Environment. This paper is analyzed that application of food waste Biogas plant system.
-
For the efficient use of thermal energy and its related equipments, optimal energy in view of quality and quantity should be timely provided. The core of thermal energy storage technology deals with an energy efficiency for effective energy storage and supply. The relative importance of thermal energy storage technology has been underestimated so far, and the specific projects on this filed have been performed intermittently. For the efficient and systematic approach of the energy supply system projects on thermal energy storage technology, we conduct the survey on the current status of this field. Firstly, classify into the thermal energy storage and describing the recent research for each system. The necessity and importance of thermal energy storage technology is identified through this study. It reveals that the thermal energy storage is the mandatory technology to solve the difference of supply and demand in thermal loads. It would greatly contribute to the combined heat and power(CHP) system. The urgent technologies for the commercial value and the core technologies for the CHP system are classified with this study.
-
A simulation program is developed for the optimal design of small scale district heating and cooling system. Main features for the simulation program are the reliability and the easiness for the optimal design of the DHC(District Heating and Cooling) systems. In order for implementing those features, the operational characteristics according to the prime movers is modeled based on the materials of efficiency as a function of operational load. The unit energy load model is also developed extensively for several building types, of which the corresponding district consist, such as apartment complex, hotel, hospital, buildings for business and commercial use respectively. The specific features and the overall procedure of the simulation are described in brief in this paper. The results of the simulation for several test cases will be presented in subsequent study.
-
Recently, curtainwall is built according to expand residential-commercial complex and high-raised buildings in residential buildings. It is that curtainwall has advantage to provide for the building occupants a connection between indoor spaces and the outdoors through the introduction of daylight and views into the regularly occupied areas of the building. These buildings also make a result increasing the amount used energy in domestic residence. Therefore, Aims of this study is to suggest advanced design through analysis of daylight, energy and envelope elements in GBCC and glazing simulation depended on case studies.
-
The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.
-
The Francis type hydro turbine with vertical axis has been designed and analized for hydraulic performance verification. The guide vane angle of turbine casing were designed to be varied according to the condition of head and flowrate. When the changes in flowrate and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed hydro turbine in this study will be suitable for small hydro power stations with medium and high head such as agricultural reservoirs and large dam.
-
This study was carry out evaluation of long-term performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of
$2m^3$ and is supplied by a$120m^2$ evacuated tubular solar collector, a$6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a clear day more than 400W/$m^2$ , the daily fresh water showed to produce more than about 500liter, and from January, 2007 to October, 2008 for 2 years, solar irradiance daily averaged was measured 370W/$m^2$ , the daily fresh water yield showed that can be produced about 330liter. -
The purpose of this study is to compare the effect on the thermal stratification under various aspect ratios in the solar storage tank using FLUENT. Numerical calculations of three designs with different aspect ratio were carried out to show the behaviour of stratification in a solar storage tank. The calculation results show that the thermal stratification of the 2.5:1 aspect ratio solar storage tank can be 6.22% higher then that of the 1.5:1 aspect ratio solar storage tank and 2.68% higher then that of the 2:1 aspect ratio solar storage tank.
-
The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.
-
The objective of this research is to determine overall heat transfer coefficients (K-value) of exterior wall, floor, and roof of Nakseonjae, a Korean traditional residence via field measurement of transient heat flow and temperature difference across each envelope component. Heat flow sensors and T-type thermocouple were attached on the internal and the external surface of each building component, and real-time measurement data were collected for the three consecutive summer days. The K-values determined in this research showed good agreement with other results from open literature. Peak and annual thermal loads of the traditional residence estimated by a commercial energy simulation program were compared with those for a current apartment house. The traditional house showed lower annual cooling load than that of the current building. It may caused by the fact that the traditional building has less air-tight envelopes and no fenestration passing direct solar radiation into the space.
-
The photovoltaic(PV) industry has been growing around the PV advanced countries such as Japan, Germany, Europe and USA. In recent years, China became a strong performer in the world PV market share, increasing solar cell production rapidly The global photovoltaic (PV) market grew by over 40% in 2007, with approximately 2.3GW of newly installed capacity. The global cumulative installed capacity has reached 9GW. The cumulative installed power of PV system in Korea tremendously increased to 74.7MW at the end of 2007. Up to Sep. 2008 The cumulative installed power of PV system in Korea is approximately 377MW. The value chain of photovoltaic in Korea is creating actively. Thus Korea is predicted to see 800MW of modules installed in 2010. Korea's renewable energy is also targeting to take 5% of the total energy consumption by 2011.
-
Measures for coping with energy shortage are being sought all over the world. Following such a phenomenon, effort to use less energy in the design of buildings and equipment are being conducted. In particular, a program to evaluate the performance of a building comes into the spotlight. However. indispensable standard wether data to estimate the exact energy consumption of a building is currently unprepared. Thus, after appling standard weather data for four weather factors which were used in previous researches to Visual DOE 4.0, we compared it with the result of the existing data and evaluated them. For the monthly cooling and heating load of our target building, we used revised data for June, July, August, and September during which cooling load is applied. When not the existing data but the revised data was used, the research shows that an average of 14.9% increased in June, August, and September except for July. Also, in a case of heating load, the result by the revised data shows a reduction of an average of 11.9% from October to April during which heating load is applied. In particular, the heating loads of all months for which the revised data was used were more low than those of the existing data. In the maximum cooling and heating load according to load factors, the loads by residents and illumination for which the revised data was used were the same as those of the existing data, but the maximum cooling loads used by the two data have a difference in structures such as walls and roofs. Through the above results, the research cannot clearly grasp which weather data influences the cooling and heating load of a building. However, in the maximum loads by the change of weather data in four factors (dry-bulb temperature, web-bulb temperature, cloud amount, and wind speed) among 14 weather factors, the research shows that 5.95% in cooling load and 27.56% in heating load increased, and these results cannot be ignored. In order to make weather data for Performing energy performance evaluation for future buildings, the flow of weather data for the Present and past should be obviously grasped.
-
Since The measured solar radiation incident on tilted surfaces by all directions has been widely used as important solar radiation data in installing solar flat-plate collectors. To maximize the incident beam radiation, the slope, which is the angle between the plane of the surface in question and the horizontal, and the solar azimuth angles are needed for these solar thermal systems. This is because the performance of the solar thermal system is much affected by angle and direction of incident rays. Recognizing those factors mentioned above are of importance, actual experiment has been performed in this research to obtain the angle of inclination with which the maximum incident rays can be absorbed. The results obtained in this research could be used in installing optimal solar flat-plate collectors.
-
This study is describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu culture center of Kwanju. Control condition for solar cooling and hot water system is changed by connection of auxiliary heater. Demonstration system was connected to central air conditioning system. Demonstration system was operated by two types. First type(A) was operated to cooling and hot water supply in that order. Second type(B) was operated to hot water supply and cooling in that order. As a result. it was indicated that the total solar energy consumption of (A) was 799 MJ and the solar energy consumption rate for the cooling and hot water supply was 70% and 30% respectively. Total solar energy consumption of (b) was 898 MJ and the solar energy consumption rate for the cooling and hot water supply was 31% and 69% respectively.
-
Cylindrical stainless-steel/sodium heat pipe for a high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Two layers of stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The effective heat transport length, the thermal load, and the operating temperature were varied as thermal transport conditions of the heat pipe. The thermal load was supplied by an electric furnace up to 1kW and the cooling was performed by forced convection of air The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total effective thermal conductivity was as low as 43,500 W/m K for heat flux of 176.4 kW/
$m^2$ and of operating temperature of 1000 K. -
The heat transfer characteristics of a solar high-temperature receiver with heat pipes was investigated by numerical simulation. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with internal geometry variation of a solar receiver incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm. The angle of receiver end wall was varied between
$0^{\circ}$ and$45^{\circ}$ . The wall thickness of the heat pipe channel was 4mm and 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the conduction heat transfer along the channels. The numerical results are compared and analyzed from the view Point of high-temperature solar receiver. -
The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The extraction of hot air from the space will enhance the performance of BIPV systems. The solar collector utilizing these two aspects is called PV/T(photovoltaic/thermal) solar collector. This research is about the development of solar roof system with PV/T collector to apply into buildings. A test cell experiment was performed with the PVT roof installed: It found that the hot air supply from the PVT air collector contributed to increase the heating efficiency by 2 times and the electrical efficiency by about 8%.
-
A numerical and experimental studies are carried out to investigate the heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Using the numerical model, the heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.
-
This study is on the availability of solar thermal energy in Korean high-rise apartment complex depending on the installation type of solar collectors to roof or facade of building. Firstly, solar access evaluation on the roof and the facade of apartment buildings was carried out. The total thermal load of each apartment unit and building was investigated and matched with the energy which was produced by solar thermal systems on the facade. The considered layout patterns of apartment buildings were '一type', 'alternative 一type', 'ㄱtype' and 'ㅁtype' and that was analyzed in prior studies. Extensive dynamic hourly energy simulations with the solar thermal system were Performed with the TRNSYS of SEL. We assumed that the apartment complex is composed of 9 buildings and located in Daejeon. The collectors are the heat-pip evacuated tube collectors and the number of collectors are 45 tubes We assumed that the collectors are installed on the balcony of each unit and the angle of incilnation is
$90^{\circ}$ . As a result, the supply amount of solar thermal systems is about 4,850,086kJ/hr and the solar fraction is about 66%. The solar fraction according to each azimuth is about 66% on the south, 62% on the south-east$30^{\circ}$ and 56% on the south-east$60^{\circ}$ . So, we quantitatively got a line on the optimal azimuth for installing the solar thermal systems. The solar fraction has differences from 5% to 15% of each floor, 6th, 12th and 20th and those tendencies are same in analyzed each 4 types of the apartment complexes. -
Nowaday, The Sustainable Development about global environment is the most important subject. In urban environment, a variety of the nature energy utilization such as the solar energy are the most efficient solution to solve this issue. One of these efficient solutions, a photovoltaic system using sunlight has been introduced to the building with an advantage such as cost-effective, safe for using and good for environment friendly in light with energy utilization. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. Therefore the goal of this study is to get securing the application information of BIPV as finished envelope. The purpose of this study is to investigate the current performance measurement methods of BIPV module and to measure the performance of BIPV module by mock-up tests.
-
Available daylight in inside offers comfortable view environment, and psychological and physical advantages to people in the room. But, it has a problem of an excessive direct sunlight. This study calculated daylight responsive dimming control slope by Roller Shade system with Mock-up test. With three 1/2 scale Mock-up rooms, we performed a test for calculation of daylight responsive dimming control slope in different shade height of each room through the different height of roller shade systems. This research will be used as a fundamental study for automated roller shade systems.
-
In a residential complex case, the efficiency of land use are maximized, but a variation of external condition such as load in-equality, the increase in wind velocity and solar radiation by a height causes increasing energy in a building. Besides, because of increasing window size for a lighting and a view, it comes heating load in winter and cooling load in summer. A choice of cooling-system is important for this reason. Recently an internal high-rise residential complex installs an air-cooling system and operates individual heating. However, this study applies water-cooling used one public cooling-tower instead of an air-cooling system, also with an efficiency test of an air and a water-cooling system, consider an internal applicability.
-
This paper treats TEGS(Thermo-Electric Generation System) by using two different metals which have N and P types of thermo-electric characteristics respectively. Heat source is the thermal energy from the oxidative reaction of methanol and catalyst. Heat sink is an air cooling system (fan and heat sink). 4 TEMS of
$40{\times}40mm$ of TEGS with 500ml methanol produce the electric power of maximum 6W and average 5W for 9 hours. -
The purpose of this study is not only to evaluate thermal performance but also to find the stress behavior of heat transfer tubes under the part load operation in Heat Recovery Steam Generator. Flow analysis was performed to know the behavior of exhaust gas from gas turbine and thermal performance was calculated using distribution of hot exhaust velocity. In addition, tubes temperature during operation were gathered from actual plant to verify the uneven flow distribution under part load operation. Stress analysis was performed using tubes temperature data gathered from actual plant under both part and full load operations to know the stress behavior of tubes.
-
In case of low pressure steam turbine used in power plant, it was operated in wet steam and high stress condition. Therefore, it is possible that the corrosion damage of low pressure was induced by this condition. According to previous study, about 30% of total blade failure correspond to corrosion fatigue or SCC(stress corrosion cracking) in low pressure turbine. Especially, LSB(last stage bucket) of low pressure turbine has a higher hardness to prevent erosion damage due to water droplet however, generally this is more dangerous for SCC damage. Therefore, to improve reliability of turbine blade. various methods for SCC evaluation has been developed. In this study, the crack found in LSB during in-service inspection was evaluated using microstructure analysis and stress analysis. From the stress analysis, the optimum size of fillet to remove the crack was proposed. And also, the reliability was evaluated for modified LSB using GOODMAN diagram.
-
A predictive model of wind speed in the wind farm has very important meanings. This paper presents an estimation model of wind speed based on time series analysis using the observed wind data at Hangyeong Wind Farm in Jeju island, and verification of the predictive model. In case of Hangyeong Wind Farm and Haengwon Wind Farm, The ARIMA(Autoregressive Integrated Moving Average) predictive model was appropriate, and the wind speed estimation model was developed by means of parametric estimation using Maximum likelihood Estimation.
-
Steam reforming of methane is the most wide spread method for hydrogen production. It has heed studied more than 60 years. methane reforming has advantages in technological maturity and economical production cost. Using a high-temperature solar thermal energy is an advanced technology in Steam reforming process. The synthesis gas, the product of the reforming process, can be applied directly for a combined cycle or separated for a hydrogen. In this paper, hydrogen conversion rate of a solar chemical reactor is calculated using commercial CFD program. 2 models are considered. Model-1 is original model which is designed from the former researches. And model-2 is ring-disk set of baffle is inserted to enhance the performance. The solar chemical reactor has 3 inlet nozzle at the bottom of the side wall near quartz glass and an exit is located at the top. Methane and steam is premixed with 50:50 mole fraction and goes into the inside. Passing through the porous media, the reactants are conversed into hydrogen and carbon monoxide.
-
Using WindPRO that was software for windfarm design developed by EMD from Denmark, wind resources for the western Jeju island were analyzed, and the performance of WindPRO prediction was evaluated in detail. The Hansu site and the Yongdang site that were located in coastal region were selected, and wind data for one year at the two sites were analyzed using WindPRO. As a result, the relative error of the Prediction for annual energy Production and capacity factor was about
${\pm}20%$ . For evaluating wind energy more accurately, it is necessary to obtain lots of wind data and real electric power production data from real windfarm. -
Renewable energy information becomes one of the greatest issues, but it is difficult for a general user to manage and utilize new renewable energy information. Therefore we develop the utilization system of the resource map which aimed to provide the information for space analysis and vertification of the validity for development of each part of solar, wind, smallhydro, biomass, geothermal. But this system is needed to gather more supporting data and make resonable index to make various decisions.
-
The wind resource potentials of South Korea are estimated as preliminary stage using the national wind map which has been being established by numerical wind simulation and GIS (Geographical Information System) exclusion analysis. The wind resource potentials are classifying into theoretical, geographical, technical and implementation potentials and the calculation results are verified by comparing to other countries' potentials. In GIS exclusion, urban, road, water body, national parks and steep slope area are excluded from onshore geographical potential while water depth and offshore distance from the shoreline are applied s offshore exclusion conditions. To estimate implementation potential, dissemination records of European countries are adopted which is about 1/8 of geographical potential.
-
Since the atmospheric clearness index is main factor for evaluating atmosphere environment, it is necessary to estimate its characteristics all over the major cities in Korea Peninsula. We have begun collecting clearness index data since 1982 at 16 different cities in South Korea and estimated using empirical forecasting models at 21 different stations over the North Korea from 1982 to 2006. This considerable effort has been made for constructing a standard value from measured data at each city. The new clearness data for global-dimming analysis will be extensively used by evaluating atmospheric environment as well as by solar PV application system designer or users. From the results, we can conclude that 1) Yearly mean 63.5% of the atmospheric clearness index was evaluated for clear day all over the 37 cities in Korea Peninsula, 2) Clear day's atmospheric clearness index of spring and summer were 64.6% ana 64.8%, and for fall and winter their values were 63.3% and 61.3% respectively in Korea Peninsula.
-
Jung, Woo-Sik;Kim, Hyun-Goo;Lee, Hwa-Woon;Park, Jong-Kil;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk 318
We classified wind sectors according to the wind features in South Korea. In order to get the information of wind speed and wind direction, we used and improved on the atmospheric numerical model. We made use of detailed topographical data such as terrain height data of an interval of 3 seconds and landuse data produced at ministry of environment, Republic of Korea. The result of simulated wind field was improved. We carried out the cluster analysis to classify the wind sectors using the K-means clustering. South Korea was classified as 10 wind sectors which have a clear wind features. -
This paper presents an estimation method of small hydro power(SHP) potential using a SHP resource map. As a basic unit of SHP energy potential at a certain area, capacity and annual energy production of unit head was calculated from the catchment area given by a SHP resource map which was established by numerical hydrologic simulation so that a logical and relatively accurate potential estimation was possible comparing with the performance analysis model for SHP sites. The performance characteristics for Samok-Ri site were analyzed, using the SHP resource map and the developed model. It was found that the SHP resource map and the developed model is useful tool to estimate SHP potential.
-
In this paper, we argue that new&renewable energy resources are difficult to be managed with GIS technology due to their spatiotemporal features, and suggest that spatiotemporal database and sensor network can be applied to the new&renewable energy management system as advanced technology. To give the motivated issues, we introduce and analyze the concept of the spatiotemporal database and sensor network, and the case studies in each applications.
-
The resource potentials biomass resources of South Korea are estimated as Preliminary stage using relevant National statistics. Biomass resources possibly be collected, used and converted to bioenergy in Korea are forest biomass, agricultural residue, livestock manure and municipal solid wastes. The potential biomass resources are classifying into total potential, available potential and technically feasible biomass resources, Total potential biomass resources in Korea are estimated to be around 140million tons of oil equivalent (toe). Available potentials are estimated to be around 11million annually. The technically feasible biomass resources with current technologies are estimated to be 2.3million toe annually. These estimated values are the minimum of all potentials since they are all estimated from explicit statistics. Although actually there exist huge amount of biomass on the land as well as in the sea, potential resources for bioenergy are believed to be limited. The potentials are to be inclosed with the improvement of bioenergy technologies.
-
As a 'Construction of Information System on GIS based and Resource Map', establish the strategic of design about construction of Spatial Data Warehouse for New & Renewable Energy For Construction of comfortable Spatial Data Warehouse, It suggested The Construction of Spatial Data Warehouse on Block(Grid) Based with Analyze into the old Data & Method of Study. For Decide the Block(Grid) Size, We need The Study of Data & Method. Also, we expect Standardize The Process of Change & Apply with Data. make the best use of New & Renewable Energy Part