Three new metal-organic copper(II) complexes, $[Cu(H_2PZTC)_2]_n{\cdot}2nH_2O$ (1), $[Cu(HPZTC){\cdot}2H_2O]_n{\cdot}2nH_2O$ (2), and $Cu_2[(PZHD)(OH)(H_2O)_2]_n$ (3) ($H_3PZTC$ = pyrazine-2,3,5-tricarboxylic acid, $PZHD^{3-}$ = 2-hydroxypyrazine-3,5-dicarboxylate), have been synthesized from $Cu(II)/H_3PZTC$ system under different synthetic conditions, and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis. In complexes 1 and 2, $H_3PZTC$ ligands loose one and two protons, which were transformed into $H_2PZTC^-$ anion and $HPZTC^{2-}$ dianion under different preparation condition, respectively. Furthermore, two ligands coordinate with Cu(II) cations in different modes, leading to the formation of the different chain structures. In complex 3, $H_3PZTC$ ligand was converted into a new ligand-PZHD by in situ decarboxylation and hydroxylation under a higher pH value than that for complexes 1 and 2. PZHD ligands link the Cu(II) cations to form a 2D layer structure. These results demonstrate that the preparation conditions, including pH value and reaction temperature etc, play an important role in the construction of complexes based on $H_3PZTC$ ligand.