DOI QR코드

DOI QR Code

Chiral Separation of Lactic Acid in Culture Media and Cells of Lactobacillus delbrueckii subsp. lactis as O-Pentafluoropropionylated (S)-(+)-3-Methyl-2-Butyl Ester by Achiral Gas Chromatography-Mass Spectrometry

  • Paik, Man-Jeong (Department of Molecular Science and Technology, Ajou University) ;
  • Nguyen, Duc-Toan (Department of Molecular Science and Technology, Ajou University) ;
  • Yoon, Jae-Hwan (Department of Molecular Science and Technology, Ajou University) ;
  • Chae, Han-Seung (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Kyoung-Rae (Biometabolite Analysis Laboratory, College of Pharmacy, Sungkyunkwan University) ;
  • Lee, Gwang (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Pyung-Cheon (Department of Molecular Science and Technology, Ajou University)
  • Received : 2011.02.26
  • Accepted : 2011.06.09
  • Published : 2011.07.20

Abstract

The enantiomeric separation of lactic acid for its absolute configuration has become important task for understanding its biological origin and metabolic process involved in the formation of lactic acid. It involves the conversion of enantiomers as diastereomeric O-pentafluoropropionylated (S)-(+)-3-methyl-2-butyl ester and the direct separation by gas chromatography-mass spectrometry on a achiral capillary column. The (R)- and (S)-lactic acids were completely separated with a high resolution of 1.9. The newly developed method showed good linearity (r ${\geq}$ 0.999), precision (% relative standard deviation = 3.4-6.2), and accuracy (% relative error = -7.7-1.4) with the detection limit of 0.011 ${\mu}g/mL$. When the method was applied to determine the absolute configuration of lactic acid in Lactobacillus delbrueckii subsp. lactis 304 (LAB 304), the composition (%) of (R)-lactic acid in the cell pellet and in the culture medium were $89.0{\pm}0.1$ and $78.2{\pm}0.4$, respectively. Thus, it was verified that the present method is useful for the identification and composition test of lactic enantiomers in microorganisms.

Keywords

References

  1. Caligiani, A.; Cirlini, M.; Palla, G.; Ravaglia, R.; Arlorio, M. Chirality 2007, 19, 329. https://doi.org/10.1002/chir.20380
  2. Grabar, T. B.; Zhou, S.; Shanmugam, K. T.; Yomano, L. P.; Ingram, L. O. Biotechnol. Lett 2006, 28, 1527. https://doi.org/10.1007/s10529-006-9122-7
  3. Joshi, D. S.; Singhvi, M. S.; Khire, J. M.; Gokhale, D. V. Biotechnol. Lett 2010, 32, 517. https://doi.org/10.1007/s10529-009-0187-y
  4. John, R. P.; Nampoothiri, K. M.; Pandey, A. Appl. Microbiol. Biotechnol 2007, 74, 524. https://doi.org/10.1007/s00253-006-0779-6
  5. Ewaschuk, J. B.; Zello, G. A.; Naylor, J. M.; Brocks, D. R. J. Chromatogr. B 2002, 781, 39. https://doi.org/10.1016/S1570-0232(02)00500-7
  6. Kim, K. R.; Lee, J.; Ha, D.; Jeon, J.; Park, H. G.; Kim, J. H. J. Chromatogr. A 2000, 874, 91. https://doi.org/10.1016/S0021-9673(00)00072-8
  7. Kim, K. R.; Lee, J.; Ha, D.; Kim, J. H. J. Chromatogr. A 2000, 891, 257. https://doi.org/10.1016/S0021-9673(00)00690-7
  8. Inoue, Y.; Shinka, T.; Ohse, M.; Kohno, M.; Konuma, K.; Ikawa, H.; Kuhara, T. J .Chromatogr. B 2007, 855, 109. https://doi.org/10.1016/j.jchromb.2007.02.052
  9. Inoue, Y.; Shinka, T.; Ohse, M.; Ikawa, H.; Kuhara, T. J. Chromatogr. B 2006, 838, 37. https://doi.org/10.1016/j.jchromb.2006.02.019
  10. Ewaschuk, J. B.; Naylor, J. M.; Barabash, W. A.; Zello, G. A. J. Chromatogr. B 2004, 805, 347. https://doi.org/10.1016/j.jchromb.2004.03.004
  11. Norton, D.; Crow, B.; Bishop, M.; Kovalcik, K.; George, J.; Bralley, J. A. J. Chromatogr. B 2007, 850, 190. https://doi.org/10.1016/j.jchromb.2006.11.020
  12. Franco, E. J.; Hofstetter, H.; Hofstetter, O. J. Pharm. Biomed. Ana. 2009, 49, 1088. https://doi.org/10.1016/j.jpba.2009.01.033
  13. Maier, V.; Petr, J.; Knob, R.; Horakova, J.; Sevcik, J. Electrophoresis 2007, 28, 1815. https://doi.org/10.1002/elps.200600578
  14. Tana, L.; Wang, Y.; Liu, X.; Ju, H.; Li, J. J. Chromatogr. B 2005, 814, 393. https://doi.org/10.1016/j.jchromb.2004.10.059
  15. Paik, M. J.; Kim, K. R. J. Chromatogr. A 2004, 1034, 13. https://doi.org/10.1016/j.chroma.2004.02.032
  16. Paik, M. J.; Lee, H. J.; Kim, K. R. J. Chromatogr. B 2005, 821, 94. https://doi.org/10.1016/j.jchromb.2005.04.011
  17. Paik, M. J.; Moon, S. M.; Kim, K. R.; Choi, S.; Ahn, Y. H.; Lee,G. Biomed. Chromatogr. 2008, 22, 339. https://doi.org/10.1002/bmc.939

Cited by

  1. Organic Acid Profiling Analysis in Culture Media of Lactic Acid Bacteria by Gas Chromatography-Mass Spectrometry vol.3, pp.3, 2011, https://doi.org/10.5478/msl.2012.3.3.74
  2. Acidic metabolite profiling analysis of catecholamine and serotonin as O‐ethoxycarbonyl/tert‐butyldimethylsilyl derivatives by gas chromatography–mass spectrometry vol.27, pp.2, 2011, https://doi.org/10.1002/bmc.2778
  3. 퇴행성신경질환의 진단을 위한 신경전달물질 대사체의 질량 분석법 동향 vol.30, pp.6, 2011, https://doi.org/10.5806/ast.2017.30.6.355
  4. Acremonamide, a Cyclic Pentadepsipeptide with Wound-Healing Properties Isolated from a Marine-Derived Fungus of the Genus Acremonium vol.84, pp.8, 2011, https://doi.org/10.1021/acs.jnatprod.1c00305