Porphyrins generally bind DNA in two different ways with respect to the mixing ratio; monomeric binding at a low mixing ratio and outside stacking at a high mixing ratio. In the present study, CTDNA binding property of a planar structured porphyrin, 5,10,15,20-tetrakis(N-methyl-4-pyridin-4-yl-phenyl)porphyrin (referred to as B-TMPyP) was investigated using absorption, CD, LD, and $LD^r$ spectroscopies. B-TMPyP produced a bisignate CD band, even at the lowest mixing ratio, indicating that B-TMPyP may not have a monomeric binding mode. From the observations of the spectral changes to the absorption, CD, and LD spectra in mixing ratio dependent titrations, B-TMPyP seems to have a quite different stacking type compared to that for the binding of $H_2$TMPyP. Moreover, B-TMPyP produced a CD band of opposite shape in the Soret band region. A qualitative explanation for the observed optical differences is also given.