Major cellulase components, such as three endoglucanases (endoglucanases I, II, and III) and one exoglucanase (exoglucanase II), were isolated from a commercial cellulase (Meicelase TP 60) derived from the fungus Trichoderma viride by a series of chromatography procedures. These procedures were the gel filtration on Bio-Gel, the anion exchange on DEAE-Bio-Gel A, the cation exchange on SP-Sephadex C50, and the affinity chromatography on Avicel cellulose. The average molecular weights determined by SDS-polyacrylamide gel electrophoretic analysis were 51,000, 59,000, 41,000 and 62,000 Da for endoglucanases I, II and III and exoglucanase II, respectively. The extinction coefficients, ${\varepsilon}^{1%}$ 280 nm, of these enzymes were 11.7, 3.3, 7.2 and 11.3, respectively. Among them, the endoglucanase II showed the very low value of the coefficient compared with the others. On the other hand, it was found that endoglucanase II and III were of more random hydrolytic mode on carboxymethylcellulose as compared with those of endoglucanase I and exoglucanase II. Especially, endoglucanase I showed less random action than that of exoglucanase II. In the hydrolysis of insoluble cellulose by the enzyme components, cellobiose was the major product, but glucose was the major product by endoglucanase III.