DOI QR코드

DOI QR Code

Dissociation Kinetics of Linear polyaminopolycarboxylate Complexes of Lanthanides(III)

  • Ki-Young Choi (Department of Chemistry, Mokwon University) ;
  • Ki Sung Kim (Department of Chemistry, Mokwon University) ;
  • Choon Pyo Hong (Department of Chemical Education, Kongju National University)
  • Published : 1994.09.20

Abstract

The dissociation kinetics of linear polyaminopolycarboxylate complexes of lanthanide ions (L$n^{3+}: Ce^{3+},\;Eu^{3+}\;and\;Yb^{3+}$) has been studied in an aqueous solution of 0.10 M (NaCl$O_4$) at 25.0${\pm}0.1^{\circ}C$ using Cu(II) ions as a scavenger. The dissociation rates of acid-catalyzed pathway decrease in the order Ln(EPDTA$)^- > Ln(DPOT)^- > In(TMDTA)^- > Ln(MPDTA)^- > Ln(EDTA)^- > Ln(PDTA)^- > Ln(DCTA)^-$ according to the present and literature data. An increase in the N-Ln-N chelate ring from 5 to 6 and substitution of two methyl groups, one ethyl and hydroxyl group on a chelate ring carbon of these ligands leads to a decrease in kinetic stabilities of the complexes. The substitution of one methyl group and cyclohexyl ring on a ring carbon, however, results in a significant increase in the kinetic stability of the resulting $Ln^{3+}$ complexes. Individual reaction steps taking place for each system, with different copper, acetate buffer concentration and pH dependence, are also discussed.

Keywords

References

  1. Inorg. Chem. Acta v.109 Choppin, G. R.;Brock, J. L.
  2. J. Less-Common Met. v.112 Choppin, G. R.
  3. Inorg. Chim. Acta v.109 DeJonghe, M.;D'Olieslager, W.
  4. Inorg. Chem. v.25 Breen, P. J.;Horrocks, R. DeW.;Johnson, K.
  5. Inorg. Chem. v.28 Muscatello, A. C.;Choppin, G. R.;D'Olieslager, W.
  6. J. Coord. Chem. v.24 Choi, K. Y.;Choppin, G. R.
  7. Inorg. Chem. v.23 Spirliet, M. R.;Rebizant, J.;Loncin, M. F.;Desreux, J. F.
  8. Anal. Chem. v.60 Hagen, J. J.;Taylor, S. C.;Tweedle, M. F.
  9. Chem. Rev. v.87 Lauffer, R. B.
  10. Lanthanide Probes in Life, Chemical and Earth Science Tweedle, M. F.;Bunzli, J.-C.(Ed.);Choppin, G. R.(Ed.)
  11. Inorg. Chem. v.32 Kumar, K.;Chang, C. A.;Tweedle, M. F.
  12. J. Coord. Chem. v.30 Choi, K. Y.;Kim, J. C.;Kim, D. W.
  13. Polyhedron v.13 Choi, K. Y.;Kim, K. S.;Kim, J. C.
  14. Bull. Chem. Soc. Jpn. v.43 Ogino, H.;Takahasi, M.;Tanaka, N.
  15. Chem. Zvesti v.32 Novak, V.;Lucansky, J.;Svicekova, M.;Majer, J.
  16. Critical Stability Constants v.6 Martell, A. E.;Smith, R. M.
  17. Chemical Kinetics and Reacton Mechanism Espenson, J. H.
  18. Bull. Chem. Soc. Jpn. v.67 Choi, K. Y.;Kim, K. S.;Kim, J. C.
  19. Polyhedron v.1 Kim, I. H.;Yun, S. S.
  20. Inorg. Chem. v.30 Brucher, E.;Cortes, S.;Chavez, F.;Sherry, A. D.
  21. Inorg. Chim. Acta v.75 Laurenczy, G.;Raddics, L.;Brucher, E.
  22. Acta Chem. Scand. v.27 Ryhl, T.
  23. Inorg. Chem. v.9 Nyssen, G. A.;Margerum, D. W.

Cited by

  1. Formation and dissociation kinetics of triaza-crown-alkanoic acid complexes of transition metal(II) and lanthanide (III) vol.44, pp.4, 1994, https://doi.org/10.1016/s0039-9140(96)02052-8
  2. Complexation of 1,3-Diamino-2-hydroxypropane-N,N,N',N'-tetraacetic Acid (DHPTA) with Heavy Lanthanides (Tb3+, Ho3+, Lu3+) in Aqueous Solution vol.49, pp.2, 1994, https://doi.org/10.1007/s10953-020-00950-y