A series of samples of the ${Ca_xEu_{1-x}FeO_{3-y}$ (x=0.00, 0.25, 0.50, 0.75, and 1.00) system has been prepared at $1,250^{\circ}C$ under an atmospheric air pressure. X-ray diffraction analysis of the solid solution assigns the structure of the compositions of x=0.00, 0.25, 0.50, and 0.75 to the orthoferrite-type orthorhombic system, and that of x=1.00 to the brownmillerite-type orthorhombic one. The mole ratios of $Fe^{4+}$ ion in the solid solutions or ${\tau}$ values were determined by the Mohr's salt analysis and nonstoichiometric chemical formulas of the system were formulated from x, ${\tau}$, and y values. From the result of the Mossbauer spectroscopy, the coordination and magnetic property of the iron ion are discussed. The electrical conductivities are measured as a function of temperature. The activation energy is minimum at the composition of x=0.25. The conduction mechanism can be explained by the hopping of electrons between the mixed valences of $Fe^{3+}\;and\;Fe^{4+}$ ions.