8. Nocentini, S. Mutat. Res. 1986, 161, 181.
9. Kim, J. H.; Sohn, S. H.; Yang, K. S.; Hong, S. W. J. Kor. Chem. Soc. 1994, 38, 8.
10. Kim, J. H.; Sohn, S. H.; Lee, G. S.; Yang, K. S.; Hong, S. W. Bull. Kor. Chem. Soc. 1993, 14, 506.

Synthesis and Crystal Structure of $\mathrm{CpWOss}_{3}(\mathrm{CO})_{9}$ ($\mu-\mathrm{O}$) $(\mu-\mathrm{CHTO})(\mu-\mathrm{H})$

Joon T. Park,* Jeong-Hee Chung, Hee-Joon Kim, Kyoung Won Yoon, ${ }^{\dagger}$ Sock-Sung Yun, ${ }^{\dagger}$ Il-Hwan Suh, ${ }^{\text { }}$ and Jin-Ho Lee ${ }^{\ddagger}$

Department of Chemistry, Korea Advanced Institute of Science and Technology. Taejon 305.701, Korea
${ }^{\dagger}$ Depariment of Chemistry and
${ }^{\ddagger}$ Department of Physics, Chungnam National University, Taeson 305-764, Korea

Received March 5, 1994

In recent years alkylidyne cluster complexes have received considerable attention due to the potential surface intermediates of the μ_{r}-alkylidyne fragments in various catalytic reactions. ${ }^{1}$ In previous work, ${ }^{2}$ we have reported the synthesis and solution dynamics of a tungsten-triosmium p-xylylidyne complex, $\mathrm{CpWOs}_{3}(\mathrm{CO})_{11}\left(\mu_{3}-\mathrm{CTol}\right)\left(\mathbf{1}, \mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{Tol}=p-\mathrm{C}_{6}\right.$ $\mathrm{H}_{4} \mathrm{Me}$). Further investigation of 1 on the reactivity toward dihyrogen has revealed formation of an unexpected hydrido-oxo-alkylidene complex, $\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{O})(\mu-\mathrm{CHTol})(\mu-\mathrm{H})(2)$. Herein we report details of the synthesis and crystal structure of compound 2.

Experimental Section

General Comments. Solvents were dried prior to use. $\mathrm{CpWO}_{3}(\mathrm{CO})_{11}\left(\mu_{3}-\mathrm{CT}\right.$ ol) was prepared as described in the l terature. ${ }^{2}$ All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. The progress of the reactions was monitored by analytical thin-layer chromatography (precoated TLC plates, Silica Gel 560 F-254, E. Merck). Preparative TLC was carried out using glass-backed silica gel plates ($20 \times 20 \mathrm{~cm}$) prepared from silica gel G (Type 60, E. Merck). Infrared spectra were obtained on a Nicolet $5-M X$ FT-IR spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ spectra were recorded on a Bruker AM-300 spectrometer. Mass spectra were recorded by the staff of the Analytical Laboratory at the Lucky Ltd. using JEOL DX-300 mass spectrometer. All m / z values are referenced to ${ }^{184} \mathrm{~W}$ and ${ }^{192} \mathrm{Os}$.

Reaction of 1 with Dihydrogen. Compound 1 (20 mg , 0.016 mmol) was dissolved in toluene (25 mL) in a 250 mL glass pressure bottle. The resulting solution was degassed by the freeze-pump-thaw cycle and the bottle was charged with dihydrogen gas to a pressure of 50 psig . The resulting solution was heated at $110^{\circ} \mathrm{C}$ for 2.5 h . Evaporation of the

Table 1. Crystal Data for 2

formula	$\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{10} \mathrm{WO}^{\text {S }}$
f	1192.79
cryst syst	monoclinic
space group	P2/n
a. \AA	10.837(2)
b, \AA	26.073(2)
c. \AA	$9.232(2)$
β, deg	103.33(2)
V, \AA^{3}	2538(1)
2	4
ρ (calcd), gcm^{-3}	3.12
temp. ${ }^{\circ} \mathrm{C}$	21
$\lambda(\mathrm{MoKa}) . \mathrm{A}$	0.71069

solvent in vacuo and purification by preparative TLC (petroleum ether : dichloromethane $=1: 2$) gave $\mathrm{CpWOs}_{3}(\mathrm{CO})_{\varphi}(\mu-\mathrm{O})$ $(\mu-\mathrm{CHTol})(\mu-\mathrm{H})\left(2,0.0097 \mathrm{mmol}, 60 \%, R_{f}=0.6\right)$ as an orange solid: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 7.06-6.44(\mathrm{AB}$ pattern, 4 H$)$, $5.94(\mathrm{~s}, 5 \mathrm{H}), 5.52(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}),-18.05$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$); IR $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) \mathrm{v}(\mathrm{CO}) 2090$ (s), 2064 (vs), 2026 (vs), 2014 (s), 2006 (m), 1990 (w), 1954 (w), 1937 (m), cm^{-1}; MS (70 eV) m/z $1198\left(\mathrm{M}^{+}\right.$).

Crystal Structure of 2. Crystals of compound 2 suitable for an X-ray analysis were obtained by slow recrystallization from a mixture of petroleum ether and dichloromethane at $-10^{\circ} \mathrm{C}$. Space group and approximate cell dimensions of this crystal were determined by preliminary experiment using Weissenberg and precession photography. ${ }^{3}$ The diffraction symmetry ($2 / m, \mathrm{C}_{2 \mathrm{~h}}$) and systematic absence ($h 0 l$ for $h+l=2 n+1$ and $0 k 0$ for $k=2 n+1$) uniquely defined the centrosymmetric monoclinic space group $P 2_{1} / n$. An opaque dark red crystal of approximate orthogonal dimensions of 0.2×0.4 $\times 0.2 \mathrm{~mm}$ was mounted and aligned on a CAD-4 diffractometer. Details of the relevant crystallographic data are given in Table 1. The accurate cell parameters were refined from setting angles of 25 reflections with $10^{\circ}<\theta<14^{\circ}$, and intensity data for 3822 independent reflections in range $0 \leq h \leq 11$, $0 \leq k \leq 28,-10 \leq l \leq 10$ were collected using graphite-monochromated Mo K_{a} radiation and $\omega / 2 \theta$ scan mode, ω-scan wi$\mathrm{dth}=(0.8+0.35 \tan \theta)^{\circ}, \theta_{\text {max }}=25^{\circ}$. All data were converted to E_{0} values following correction for $\mathrm{L}-\mathrm{P}$ and absorption factors. The four heavy atoms were located by using direct method (SDP) ${ }^{4}$ and all non-hydrogen atoms were found on subsequent difference Fourier maps. The structure was refined by full-matrix least squares program with SHELX ${ }^{5}$ and function minimized was $\Sigma \omega\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$, where $\omega=1.0 /\left(\sigma^{2}\left(F_{0}\right)\right.$ $\left.+0.001834 F_{0}^{2}\right)$. Independent reflections of $2790\left[F_{0}>3 \sigma\left(F_{0}\right)\right]$ were used for the structure refinement and number of parameters refined was 338. A final difference Fourier synthesis showed a number of small peaks in the vicinity of the heavy atoms. A bridging hydride ligand could not be located with any certainty. However, thirteen hydrogen atoms attached to the $\mathrm{C}(1), \mathrm{C}$ p and Tol moieties were calculated from the known stereochemistry by adopting the $\mathrm{C}-\mathrm{H}$ distances of 1.08 \AA and refined with isotropic thermal parameters. Neutral atomic scattering factors were used with W and Os corrected for anomalous dispersion. ${ }^{6}$ Final reliability factors were $R=$

Table 2. Final Atomic Coordinates ($\left(\AA \times 10^{\circ}\right)$ and Equivalent Isotropic Thermal Parameters ($\AA^{2} \times 10^{3}$) with Esd's for 2

	x	y	z	$U_{60}{ }^{*}$
Os1	6512(1)	$3601(<1)$	2646(1)	331
Os2	8870(1)	3083 (<1)	3537(1)	294
Os3	8155(1)	3694(<1)	5747(1)	353
W	8897(1)	4091(<1)	3112(1)	375
01	8924(16)	4354(6)	4907(17)	406
011	3876(20)	4090(9)	2050(23)	728
012	5484(21)	2571(9)	3247(22)	686
013	6401(21)	3286(9)	-537(23)	766
021	11636(20)	2933(10)	4979(32)	979
022	9146(25)	2765(10)	464(30)	959
023	8217(22)	2016(8)	4609(31)	886
031	773(26)	3568(10)	7702(32)	1049
032	$7205(22)$	4369(9)	7951(25)	744
033	7233(21)	2715(8)	6859(22)	645
C11	4907(34)	$3838(15)$	2265(24)	755
C 12	5940(35)	2927(10)	3041(26)	650
C13	6445(23)	$3411(10)$	643(27)	428
C21	10493(37)	2996(10)	4317(40)	737
C22	9026(31)	2875(15)	1622(46)	811
C23	8459(26)	2410(12)	4212(35)	620
C31	9696(36)	3629(11)	6799(58)	979
C32	7527(26)	4115(11)	7095(35)	541
C33	7567(27)	3071(12)	6409(30)	563
C1	7152(24)	4349(8)	1984(27)	384
C2	$6688(26)$	4860(9)	2369(25)	440
C3	6627(25)	5266(9)	1437(29)	481
C4	6347(28)	5759(11)	1862(30)	571
C5	6035(22)	5857(9)	3203(27)	396
C6	6075(22)	5439(10)	4172(30)	450
C7	$6400(26)$	4973(11)	3759(31)	517
C8	5746(26)	6395(9)	3701(36)	330
C51	10659(38)	3931(16)	2045(53)	859
C52	9822(35)	4158(17)	930(40)	765
C53	9589(54)	4626(17)	1334(63)	123
C54	10293(61)	4698(21)	2675(61)	141
C55	11005(29)	4234(31)	3229(43)	138

${ }^{*} U_{* 1}=\frac{1}{3}\left[\mathrm{U}_{22}+\frac{1}{\sin ^{2} \beta}\left(\mathrm{U}_{11}+\mathrm{U}_{39}+2 \mathrm{U}_{19} \cos \beta\right]\right.$
$0.0642, \omega R=0.0630$, with average $\Delta / \sigma=-0.001, \Delta \rho_{\text {max }} /$ $\Delta \rho_{\text {min }}=3.8 /-2.2 \mathrm{e}^{\AA^{-3}}$ in final $\Delta \rho$ map and $S=1.3922$. Final positional parameters and $U_{\text {eq }}$ for non-hydrogen atoms are given in Table 2. All calculations were carried out using MV/ 10000 and VAX - 3400 computers.

Results and Discussion

The reaction of $\mathrm{CpWO}_{\mathrm{s}_{3}}(\mathrm{CO})_{n}\left(\mu_{3}\right.$-CTol) (1) with dihydrogen under pressure (50 psig) at $110^{\circ} \mathrm{C}$ provides an orange crystalline product 2, which is formulated as $\mathrm{CpWO}_{3}(\mathrm{CO})_{9}(\mathrm{O})(\mathrm{CH}-$ Tol)(H) on the basis of spectroscopic data. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 2 in CDCl_{3} exhibits a hydride resonance at $\delta-18.05$ ($\mathrm{d}, J=1.7 \mathrm{~Hz}$) and a downfield resonance at $\delta 5.52(\mathrm{~d}, J=1.7$

Figure 1. Molecular geometry and atomic labelling scheme for 2. The μ-hydride ligand is shown in the predicted position.

Figure 2. Stereoscopic view of 2.

Hz) of the μ-alkylidene CH hydrogen. This observation indicates that reduction of the alkylidyne ligand in 1 by dihydrogen leads to the formation of hydrido alkylidene complex 2 and that the hydride and the alkylidene ligands in 2 bridge the adjacent metal-metal bonds. The molecular ion observed in the mass spectrum of 2 differs from that of $\mathbf{1}$ by 38 mass units, which suggests that 2 might have an oxo group (1 $-2 \mathrm{CO}+\mathrm{O}+2 \mathrm{H}$). Furthermore, infrared spectrum of 2 shows essentially identical with that of the structurally characterized complex, syn- $\mathrm{CpMoOs}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{O})\left(\mu-\mathrm{CHCH}_{2} \mathrm{Tol}\right)(\mu-\mathrm{H})^{7}$, where the $-\mathrm{CH}_{2} \mathrm{Tol}$ substituent on the alkylidene carbon oriented syn (to the μ-oxo ligand) with respect to the $\mathrm{MoO}_{\mathrm{s}_{2}}$ face associated with the three edge bridging groups.

A single crystal X-ray diffraction study of 2 was carried out to ascertain the presence of the oxo ligand and the stereochemistry of the alkylidene moiety. The crystal contains an ordered arrangement of discrete $\mathrm{CpWO}_{s_{3}}\left(\mathrm{CO}_{9}(\mu-\mathrm{O})(\mu-\right.$ $\mathrm{CHTol})(\mu-\mathrm{H})$ molecules in contrast with a disordered structure of $\mathrm{CpMOOs}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{O})\left(\mu-\mathrm{CHCH}_{2} \mathrm{Tol}\right)(\mu-\mathrm{H})$ in the $\mu-\infty x_{0}$

Table 3. Interatomic Distances (\AA) and Esd's for 2

(A) Metal-Metal Distances			
$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.839(1)$	W-Os(1)	2.826(1)
Os(1)-Os(3)	$3.013(1)$	W-Os(2)	2.658(2)
$\mathrm{Os}(2)-\mathrm{Os}(3)$	2.833(1)	W-Os(3)	2.922(1)
(B) Metal-Alkylidene Distances			
$\mathrm{Os}(1)-\mathrm{C}(1)$	$2.20(2)$	W-C(1)	2.05(3)
(C) Metal-Oxygen Distances			
$\mathrm{Os}(3)-\mathrm{O}(1)$	2.13(2)	W-O(1)	1.79(2)
(D) Distances within the μ-CHTol Ligand			
C(1)-C(2)	1.51(3)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.38(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.36(3)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.40 (3)
C(2)-C(7)	1.41 (3)	$\mathrm{C}(5)-\mathrm{C}(8)$	1.53(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.40 (4)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.34(4)
(E) Metal-Carbon (Carbonyl) Distances			
Os(1)-C(11)	1.80(4)	$\mathrm{Os}(2)-\mathrm{C}(23)$	1.95(3)
$\mathrm{Os}(1)-\mathrm{C}(12)$	1.93 (3)	Os(3)-C(31)	1.74(5)
Os(1)-C(13)	1.90(2)	$\mathrm{Os}(3)-\mathrm{C}(32)$	1.90(3)
$\mathrm{Os}(2)-\mathrm{C}(21)$	1.76(4)	$\mathrm{Os}(3)-\mathrm{C}(33)$	1.90 (3)
Os(2)-C(22)	1.89(4)		
(F) Carbon-Oxygen (Carbonyl) distances			
C(11)-O(11)	$1.27(4)$	C(23)-0(23)	1.14(4)
$\mathrm{C}(12)-\mathrm{O}(12)$	1.09(3)	C(31)-0(31)	1.28 (5)
$\mathrm{C}(13)-\mathrm{O}(13)$	1.13(3)	$\mathrm{C}(32)-\mathrm{O}(32)$	1.15(3)
$\mathrm{C}(21)-\mathrm{O}(21)$	1.26(4)	$\mathrm{C}(33)-\mathrm{O}(33)$	1.11(3)
$\mathrm{C}(22)-\mathrm{O}(22)$	1.14 (4)		
(C) Distances involving the Cp Ligand			
W-C(51)	$2.38(3)$	C(51)-C(52)	1.34(5)
W-C(52)	2.46(3)	C(52)-C(53)	1.32(5)
W-C(53)	2.40(3)	$\mathrm{C}(53)-\mathrm{C}(54)$	$1.31(7)$
W-C(54)	2.29 (3)	$\mathrm{C}(54)-\mathrm{C}(55)$	1.46(7)
W-C(55)	2.29(3)	$\mathrm{C}(55)-\mathrm{C}(51)$	1.336)

and μ-alkylidene groups. ${ }^{7}$ The overall molecular geometry and the atomic labelling scheme and stereoview of 2 are illustrated in Figures 1 and 2, respectively. Interatomic distances and angles are listed in Tables 3 and 4.

Although complex 2 is associated with 60 outer valence electrons as expected for a tetrahedral cluster, ${ }^{8}$ the formal electron-counts at the individual metal atoms vary significantly, being $181 / 2 \mathrm{e}$ at $\mathrm{Os}(1), 17 \mathrm{e}$ at $\mathrm{Os}(2), 191 / 2 \mathrm{e}$ at $\mathrm{Os}(3)$ and 17 e at W . It seems probable that the differences in me-tal-metal distances are related, in part, to these variations. The osmium-osmium distances are $\mathrm{Os}(2) \mathrm{Os}(3) 2.833(1)$, Os (1)- $\mathrm{Os}(2) 2.839(1)$ and $\mathrm{Os}(1)-\mathrm{Os}(3) 3.013(1) \AA$ and the tungs-ten-osmium distances are W-Os(2) $2.658(2)$, W-Os(1) $2.826(1)$ and W-Os(3) 2.922(1) \AA. The longest of the metal-metal bonds, $\operatorname{Os}(1)-O s(3)=3.013(1) \AA$, is assigned to be associated with a single, unsupported μ-hydride ligand. ${ }^{9}$ The presence of this bridging hydride ligand is further confirmed by the enlargement of the M-M-CO angles coplanar with and adjacent to the M-H-M linkage, $<\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(32)=116.5(9)^{\circ}$ and $<\mathrm{Os}$ (3) $-\mathrm{Os}(\mathrm{I})-\mathrm{C}(11)=119.4(7)^{\circ}$. The relatively short $\mathrm{W}-\mathrm{Os}(2)=2$. $658(2) \AA$ is believed to be due to formally electron-poor nature of W and $O s(2)$ (17e each), which could be compensated for by increased bond order in the W-Os(2) linkage. ${ }^{10}$

The μ-oxo ligand [defined as $O(1)$] spans the W-Os(3) edge

Table 4. Interatomic Angles (deg) and Esd's for 2
(A) Intermetallic Angles

$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	64.20)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	57.8(0)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{W}$	61.8(0)	$\mathrm{Os}(2) \cdot \mathrm{Os}(1)-\mathrm{W}$	56.0(0)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	58.00)	Os(2)-Os(3)-W	55.00)
Os(1)-Os(3)-W	56.8(0)	$\mathrm{Os}(2)-\mathrm{W}-\mathrm{Os}(3)$	60.8 (0)
$\mathrm{Os}(1) \mathrm{W}-\mathrm{Os}(2)$	62.3(0)	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{W}$	59.9(0)
Os(1)-W-Os(3)	$63.20)$	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{W}$	64.2 (0)
(B) M-M-CO Angles			
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(11)$	170(1)	W-Os(2)-C(22)	98(1)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(11)$	119.4(7)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(23)$	105.3(8)
W-Os(1)-C(11)	133(1)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(23)$	$99(1)$
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(12)$	80(1)	W-Os(2)-C(23)	162(1)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(12)$	92.2(7)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(31)$	144(1)
W-Os(1)-C(12)	135(1)	Os(2)-Os(3)-C(31)	$88(1)$
$\mathrm{Os}(2)-\mathrm{Os}(1) \cdot \mathrm{C}(13)$	89.3(8)	$\mathrm{W}-\mathrm{Os}(3)-\mathrm{C}(31)$	$95(1)$
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(13)$	145.8(8)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(32)$	116.5(9)
W-Os(1)-C(13)	95.4(7)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(32)$	174.5(9)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(21)$	158.67)	W-Os(3)-C(32)	123.4(8)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(21)$	101.1(8)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(32)$	93.9(7)
W -Os(2)-C(21)	98.3(8)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(33)$	85.3 (9)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$	98(1)	W-Os(3)-C(33)	138.5(9)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(22)$	159(1)		
(C) $\mathrm{OC}-\mathrm{Os}-\mathrm{CO}$ angles			
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$	91(2)	$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$	$97(2)$
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$	95(1)	$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(32)$	$98(2)$
$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$	$90(1)$	C(31)-Os(3)-C(33)	$95(1)$
$\mathrm{C}(21)-\mathrm{Os}(2) \cdot \mathrm{C}(22)$	93(1)	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(33)$	$95(1)$
$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$	92(1)		
(D) Os-C-O Angles			
$\mathrm{Os}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	169(3)	$\mathrm{Os}(2)-\mathrm{C}(23)-\mathrm{O}(23)$	180(1)
$\mathrm{Os}(1)-\mathrm{C}(12)-\mathrm{O}(12)$	172(3)	$\mathrm{Os}(3)-\mathrm{C}(31)-\mathrm{O}(31)$	173(4)
$\mathrm{Os}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	178(3)	Os(3)-C(32)-O(32)	177(3)
$\mathrm{Os}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	175(3)	$\mathrm{Os}(3)-\mathrm{C}(33)-\mathrm{O}(33)$	177(3)

Os(2)-C(22)-O(22) 177(3)
(E) Angles involving $\mathrm{O}(1)$ or $\mathrm{C}(1)$

W-O(1)-Os(3)	$95.9(7)$	$\mathrm{W}-\mathrm{C}(1)-\mathrm{Os}(1)$	$832(9)$
$\mathrm{W}-\mathrm{Os}(3)-\mathrm{O}(1)$	$37.5(4)$	$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$125(2)$
$\mathrm{Os}(3)-\mathrm{O} \cdot \mathrm{O}(1)$	$46.6(5)$	$\mathrm{W}-\mathrm{C}(1)-\mathrm{C}(2)$	$120(2)$
$\mathrm{Os}(2)-\mathrm{W}-\mathrm{O}(1)$	$103.9(5)$	$\mathrm{C}(1)-\mathrm{W}-\mathrm{O}(1)$	$99.3(8)$
$\mathrm{Os}(1)-\mathrm{W}-\mathrm{O}(1)$	$97.7(5)$	$\mathrm{Os}(1)-\mathrm{W}-\mathrm{C}(1)$	$50.7(6)$
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{O}(1)$	$85.1(4)$	$\mathrm{Os}(2)-\mathrm{W}-\mathrm{C}(1)$	$111.1(6)$
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{O}(1)$	$89.8(4)$	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(1)$	$92.1(6)$
$\mathrm{Os}(3)-\mathrm{W}-\mathrm{O}(1)$	$98.1(7)$	$\mathrm{Os}(3)-\mathrm{W}-\mathrm{C}(1)$	$98.1(7)$

(F) Angles within the μ - CHTol Ligand

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	$123(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$124(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	$120(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$122(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$125(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$117(2)$		
(G) Angles within the Cp Ligand			
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$109(4)$	$\mathrm{C}(51)-\mathrm{C}(55)-\mathrm{C}(54)$	$100(3)$
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$107(5)$	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(55) \cdot$	$112(5)$
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	$111(4)$		

such that $\mathrm{W}-\mathrm{O}(1)=1.79(2) \AA, \mathrm{Os}(3)-\mathrm{O}(1)=2.13(2) \AA$, and $<\mathrm{W}$ -$O(1)-O s(3)=95.9(7)^{\circ}$, which reveals the typical unsymmetrical edge-bridging oxo ligand. The presence of analogous $\mathrm{W}=\mathrm{O}$: \rightarrow Os bonding has been found previously in μ-oxo tungsten complexes [$\mathrm{W}=\mathrm{O}(\mathrm{av})=1.79 \AA$ and $\mathrm{Os}-\mathrm{O}(\mathrm{av})=2.16 \AA$] such as $\mathrm{CpWO}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{O})\left(\mu_{3}-\mathrm{CCH}_{2} \mathrm{Tol}\right)^{11}$ anti $-\mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{O})$ $\left.\left(\mu-\mathrm{CHCH}_{2} \mathrm{Tol}\right)(\mu-\mathrm{H}){ }^{12} \mathrm{C}_{\mathrm{p}} \mathrm{WOs}_{3}(\mathrm{CO})\right)_{9}(\mu-\mathrm{O})(\mu-\mathrm{C}=\mathrm{CHTOl})(\mu-\mathrm{H}),{ }^{13}$ $\mathrm{CpWOs}_{3}(\mathrm{CO})_{8}(\mu-\mathrm{O})\left(\mu_{3}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mu-\mathrm{H}),{ }^{10} \mathrm{CpWOs}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{O})(\mu-$ $\left.\mathrm{CHCH}_{2} \mathrm{Tol}\right)(\mu-\mathrm{Cl}){ }^{14} \mathrm{CpWOs}_{3}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)(\mu-\mathrm{O})\left(\mu_{3}-\mathrm{CCH}_{2} \mathrm{Tol}\right){ }^{15}$ and $\left.\mathrm{Cp}_{\mathrm{p}} \mathrm{WO}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{O})\left(\mu-\mathrm{CCH}_{2} \mathrm{Tol}\right)\right)^{16}$

The μ-alkylidene ligand bridges the W -Os(1) edge, with $\mathrm{W}-\mathrm{C}(1)=2.05(3) \AA, \mathrm{OS}(1)-\mathrm{C}(1)=2.20(2) \AA$, and $\langle\mathrm{W}-\mathrm{C}(1)-\mathrm{Os}(1)$ $=83.2(9)^{\circ}$. The configuration of $\mathrm{C}(1)$ is such that the $\mathrm{C}(1)$ $\mathrm{C}(2)$ vector is oriented toward the μ-oxo ligand and the triangular W-Os(1)-Os(3) face. This configuration positions the Tol group syn to the $\mathrm{W}-\mathrm{Os}(1)-\mathrm{Os}(3)$ triangular face which is associated with three edge-bridging groups. The syn configuration of 2 adopted by the μ-alkylidene ligand places the bulky Cp and Tol moieties apart and avoids their steric congestion.?

All other features of the molecular geometry are within the expected range. Individual $\mathrm{Os}-\mathrm{CO}$ distances range from $1.74(5)$ through $1.95(3) \AA$, C-O bond lengths range from 1.09 (3) through $1.28(5) \AA$ and $<\mathrm{Os}-\mathrm{C}-\mathrm{O}$ angles are in the range 169(3)-180(1) ${ }^{\circ}$. Tungsten-carbon (Cp) distances vary from 2.29 (3) through $2.46(3) \AA$ and carbon-carbon (Cp) distances are in the range $131(7)-1.46(7) \AA$

In conclusion, the reaction of 1 with dihydrogen produces an unexpected hydrido-axo-alkylidene complex $\mathrm{C}_{2} \mathrm{WOS}_{3}(\mathrm{CO})_{9}$ $(\mu-\mathrm{O})(\mu$-CHTol $)(\mu-\mathrm{H})$ of $s y n$-isomer as shown in Eq. (1). The source of the oxo ligand is not known at the moment. The

oxo ligand may be derived from a CO ligand by $\mathrm{C}-\mathrm{O}$ bond scission or from other possible sources ($\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$, etc.). Note, however, that oxo-alkyne complexes $\mathrm{CpWOs}_{3}(\mathrm{CO})_{8}(\mu-\mathrm{O})\left(\mu_{3}-\eta^{2}-\right.$ $\left.\mathrm{C}_{2} \mathrm{R}_{2}\right)(\mu-\mathrm{H})(\mathrm{R}=\mathrm{H}, \mathrm{Ph}, \mathrm{Tol})$ were also produced by initial decarbonylation of the alkyne complexes $\mathrm{CpWO}_{3}(\mathrm{CO})_{10}\left(\mu_{3}-\eta^{2}-\right.$ $\left.\mathrm{C}_{2} \mathrm{R}_{2}\right)(\mu-\mathrm{H})$ followed by thermolysis at $110^{\circ} \mathrm{C} .{ }^{17}$

Acknowledgment. This work is supported by Korea Science and Engineering Foundation (KOSEF) and partial support by KOSEP for I.-H. Suh through the Science Research Center (SRC) of Excellence program is gratefully acknowledged.

Supplementary Material Available. Details of the crystallographic study of 2 are available from the authors (I.. H. S.).

References

1. (a) Muetterties, E. L.; Rhodin, T. N.; Band, E.; Brucker, C. F.; Pretzer, R. Chem. Rev. 1979, 79, 91; (b) Muetterties, E. L.; Stein, J. Chem. Rev. 1979, 79, 479; (c) Shapley, J. R.; Park, J. T.; Churchill, M. R.; Ziller, J. W.; Beanan, L. R. J. Am. Chem. Soc. 1984, 106, 1144; (d) Beanan,
L. R.; Keister, J. B. Organometalics 1985, 4, 1713; (e) Ziller, J. W.; Bower, D. K.; Dalton, D. M.; Keister, J. B.; Churchill, M. R. Organometallics 1989, 8, 492.
2. Park, J. T.; Shapley, J. R. Bull. Korean Chem. Soc. 1990, 11, 531.
3. (a) Suh, I. H.; Suh, J. M.; Ko, T. S.; Aoki, K.; Yamazaki, H. J. Appl. Cryst. 1988, 21, 521; (b) Suh, I. H.; Suh, J. M.; Ko, T. S.; Aoki, K.; Yamazaki, H. J. Appl. Cryst. 1989, 22, 183.
4. Enraf-Nonius. Structure Determination Package. EnrafNonius, Delft, The Netherlands, 1985.
5. Sheldrick, G. M. SHELX-76, Program for Crystal Structure Determination, Univ. of Cambridge, England, 1976.
6. International Tables for X-Ray Crystallography. Vol. II (1983) and III (1985). D. Reidel Publishing Company, Dordrecht, Holland.
7. (a) Park, J. T.; Chun, K. M.; Yun, S. S.; Kim, S. Bull. Korean Chem. Soc. 1991, 12, 249; (b) Park, J. T.; Chung, M.-K.; Chun, K. M.; Yun, S. S.; Kim, S. Organometallics 1992, 11, 3313.
8. Wade, K. Adv. Inorg. Chem. Radiachem. 1976, 18, 1.
9. (a) Churchill, M. R.; DeBoer, B. G. Inong. Chem. 1977, 16, 878; (b) Churchill, M. R. Adv. Chem. Ser. 1978, 167, 36.
10. Churchill, M. R.; Bueno, C.; Park, J. T.; Shapley, J. R. Inorg. Chem. 1984, 23, 1017.
11. Churchill, M. R.; Ziller, J. W.; Beanan, L. R. J. Organomet. Chem. 1985, 287, 235.
12. Churchill, M. R.; Li, Y.-J. J. Organomet. Chem. 1985, 291; 61.
13. Churchill, M. R.; Li, Y.-J. J. Organomet. Chem. 1985, 294, 367.
14. Chi, Y.; Shapley, J. R. Organometallics 1987, 6, 301.
15. Chi, Y.; Shapley, J. R.; Churchill, M. R.; Fettinger, J. C. J. Organomet. Chem. 1989, 372, 273.
16. Park, J. T.; Chi, Y.; Shapley, J. R.; Churchill, M. R.; Ziller, J. W. Organometallics 1994, 13, 813.
17. Park, J. T.; Shapley, J. R.; Bueno, C.; Ziller, J. W.; Churchill, M. R. Organometallics 1988, 7, 2307.

Convenient Method for the Synthesis of Unsymmetric Thioureas from Unreactive Amines Using $\mathbf{B u}_{2} \mathbf{S n}(\mathbf{O A c})_{2}-\mathbf{S n C l}_{2}$

Ki-Jun Hwang*. Chan-Mo Yu^{1}, and Sung-Yun Cho

Korea Research Institute of Chemical Technology P.O. Box 9. Daedeog-Danji, Taejon 305-606, Korea

Received March 14, 1994

We have been pursuing a synthetic program aimed at the potent $\mathrm{H}^{+} / \mathrm{K}^{+}$-ATPase inhibitor 1 which could have similar mechanistic behavior in biological system to FDA approved antiulcer agent, omeprazole $2 .{ }^{2,3}$ For the synthesis of com-

