References
- Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. https://doi.org/10.1146/annurev.matsci.30.1.545
- Goesmann, H.; Feldmann, C. Angew. Chem. Int. Ed. 2010, 49, 1362. https://doi.org/10.1002/anie.200903053
- Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
- Zhao, J. L.; Zhang, J. Y.; Jiang, C. Y.; Bohnenberger, J.; Basche, T.; Mews, A. J. Appl. Phys. 2004, 96, 3206.
- Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H. V. Nanotechnology 2007, 18, 065709. https://doi.org/10.1088/0957-4484/18/6/065709
- Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142. https://doi.org/10.1021/ja002535y
- Alivisatos, P. Nature Biotechnol. 2004, 22, 47. https://doi.org/10.1038/nbt927
- Jun, Y.-W.; Lee, J.-H.; Cheon, J. Angew. Chem. Int. Ed. 2008, 47, 5122. https://doi.org/10.1002/anie.200701674
- Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007. https://doi.org/10.1021/ja0782706
- Barea, E. M.; Shalom, M.; Giménez, S.; Hod, I.; Mora-Seró, I; Zaban A.; Bisquert, J. J. Am. Chem. Soc. 2010, 132, 6834. https://doi.org/10.1021/ja101752d
- Kang, S.; Yasuda, M.; Miyasaka, H.; Hayashi, H.; Kawasaki, M.; Umeyama, T.; Matano, Y.; Yoshida, K.; Isoda, S.; Imahori, H. ChemSusChem 2008, 1, 254. https://doi.org/10.1002/cssc.200700138
- Zou, L.; Gu, Z.; Zhang, N.; Zhang, Y.; Fang, Z.; Zhu, W.; Zhong, X. J. Mater. Chem. 2008, 18, 2807. https://doi.org/10.1039/b801418c
- Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmuller, A.; Rakovich, Y. P.; Donegan, J. F. J. Phys. Chem. C 2007, 111, 14628.
- Britt, J.; Ferekides, C. Appl. Phys. Lett. 1993, 62, 2851. https://doi.org/10.1063/1.109629
- Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, 3488. https://doi.org/10.1021/nl802476m
- Nann, T.; Ibrahim, S. K.; Woi, P.-M.; Xu, S.; Ziegler, J.; Pickett, C. J. Angew. Chem. Int. Ed. 2010, 49, 1574. https://doi.org/10.1002/anie.200906262
- Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Nature 2006, 442, 180. https://doi.org/10.1038/nature04855
- Wuister, S. F.; Driel, F. V.; Meijerink, A. Phys. Chem. Chem. Phys. 2003, 5, 1253. https://doi.org/10.1039/b211953f
- Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854. https://doi.org/10.1021/cm034081k
- Bailey, R. E.; Nie, S. J. Am. Chem. Soc. 2003, 125, 7100. https://doi.org/10.1021/ja035000o
- Hewa-Kasakarage, N. N.; Gurusinghe, N. P.; Zamkov, M. J. Phys. Chem. C 2009, 113, 4362. https://doi.org/10.1021/jp8106843
- Flint, E. B.; Suslick, K. S. Science 1991, 253, 1397. https://doi.org/10.1126/science.253.5026.1397
- Suslick, K. S. Science 1990, 247, 1439. https://doi.org/10.1126/science.247.4949.1439
- Crum, L. A.; Roy, R. A. Science 1994, 266, 233. https://doi.org/10.1126/science.266.5183.233
- Zhu, J.; Koltypin, Y.; Gedanken, A. Chem. Mater. 2000, 12, 73. https://doi.org/10.1021/cm990380r
- Byun, K.-T.; Seo, K. W.; Shim, I.-W.; Kwak, H.-Y. Chem. Eng. J. 2008, 135, 168. https://doi.org/10.1016/j.cej.2007.03.085
- Lee, S. S.; Byun, K.-T.; Park, J. P.; Kim, S. K.; Lee, J. C.; Chang S.-K.; Kwak H.-Y.; Shim, I.-W. Chem. Eng. J. 2008, 139, 194. https://doi.org/10.1016/j.cej.2007.09.046
- Park, J. P.; Kim, S. K.; Park, J. Y.; Ahn, S.-D.; Ok, K. M.; Kwak, H.-Y.; Shim, I.-W. Thin Solid Films 2009, 517, 6663. https://doi.org/10.1016/j.tsf.2009.05.003
- Park, J.-Y.; Park, J. P.; Hwang, C. H.; Kim, J.; Chio, M. H.; Ok, K. M.; Kwak, H.-Y.; Shim, I.-W. Bull. Korean Chem. Soc. 2009, 30, 2713. https://doi.org/10.5012/bkcs.2009.30.11.2713
- Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; John Wiley and Sons: New York, 1974.
Cited by
- One-pot synthesis of CdTe quantum dots using tellurium dioxide as a tellurium source in aqueous solution vol.291, pp.6, 2013, https://doi.org/10.1007/s00396-012-2860-2
- Effect of temperature and pressure on selected artists' pigments vol.37, pp.12, 2013, https://doi.org/10.1039/c3nj00955f
- Characteristics of LiFePO4/C composite prepared by sonochemical method under multibubble sonoluminescence vol.33, pp.2, 2016, https://doi.org/10.1007/s11814-015-0178-8
- Facile organic surfactant removal of various dimensionality nanomaterials using low-temperature photochemical treatment vol.9, pp.2, 2019, https://doi.org/10.1039/C8RA08173E
- Preparation of PbS-coated CdTe Nanocrystals through Sonochemical Reaction vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.680
- Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions vol.42, pp.29, 2011, https://doi.org/10.1039/c3dt50849h
- Syntheses of Cu2SnSe3 and Their Transformation into Cu2ZnSnSe4 Nanoparticles with Tunable Band Gap under Multibubble Sonoluminescence Conditions vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2331
- A Simple Synthesis, Characterization, and Properties of Poly(methyl methacrylate) Grafted CdTe Nanocrystals vol.618, pp.1, 2011, https://doi.org/10.1080/15421406.2015.1076305
- Facile Sonochemical Synthesis and Characterization of CdTe Nanoparticles vol.45, pp.10, 2011, https://doi.org/10.1080/15533174.2013.865218
- Facile Synthesis of CdTe Nanorods from the Growth of Te Nanorods vol.61, pp.4, 2011, https://doi.org/10.5012/jkcs.2017.61.4.185