DOI QR코드

DOI QR Code

Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions

  • Received : 2011.01.19
  • Accepted : 2011.05.13
  • Published : 2011.07.20

Abstract

Colloidal cadmium telluride (CdTe) quantum dots (QDs) and their nanoparticles have been synthesized by one pot sonochemical reactions under multibubble sonoluminescence (MBSL) conditions, which are quite mild and facile compared to other typical high temperature solution-based methods. For a typical reaction, $CdCl_2$ and tellurium powder with hexadecylamine and trioctylphosphine/trioctylphosphineoxide (TOP/TOPO) as a dispersant were sonicated in toluene solvent at 20 KHz and a power of 220W for 5-40 min at 60 $^{\circ}C$. The sizes of CdTe particles, in a very wide size range from 2 nm-30 ${\mu}m$, were controllable by varying the sonicating and thermal heating conditions. The prepared CdTe QDs show different colors from pale yellow to dark brown and corresponding photoluminescence properties due mainly to the quantum confinement effect. The CdTe nanoparticles of about 20 nm in average were found to have band gap of 1.53 eV, which is the most optimally matched band gap to solar spectrum.

Keywords

References

  1. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. https://doi.org/10.1146/annurev.matsci.30.1.545
  2. Goesmann, H.; Feldmann, C. Angew. Chem. Int. Ed. 2010, 49, 1362. https://doi.org/10.1002/anie.200903053
  3. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
  4. Zhao, J. L.; Zhang, J. Y.; Jiang, C. Y.; Bohnenberger, J.; Basche, T.; Mews, A. J. Appl. Phys. 2004, 96, 3206.
  5. Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H. V. Nanotechnology 2007, 18, 065709. https://doi.org/10.1088/0957-4484/18/6/065709
  6. Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142. https://doi.org/10.1021/ja002535y
  7. Alivisatos, P. Nature Biotechnol. 2004, 22, 47. https://doi.org/10.1038/nbt927
  8. Jun, Y.-W.; Lee, J.-H.; Cheon, J. Angew. Chem. Int. Ed. 2008, 47, 5122. https://doi.org/10.1002/anie.200701674
  9. Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007. https://doi.org/10.1021/ja0782706
  10. Barea, E. M.; Shalom, M.; Giménez, S.; Hod, I.; Mora-Seró, I; Zaban A.; Bisquert, J. J. Am. Chem. Soc. 2010, 132, 6834. https://doi.org/10.1021/ja101752d
  11. Kang, S.; Yasuda, M.; Miyasaka, H.; Hayashi, H.; Kawasaki, M.; Umeyama, T.; Matano, Y.; Yoshida, K.; Isoda, S.; Imahori, H. ChemSusChem 2008, 1, 254. https://doi.org/10.1002/cssc.200700138
  12. Zou, L.; Gu, Z.; Zhang, N.; Zhang, Y.; Fang, Z.; Zhu, W.; Zhong, X. J. Mater. Chem. 2008, 18, 2807. https://doi.org/10.1039/b801418c
  13. Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmuller, A.; Rakovich, Y. P.; Donegan, J. F. J. Phys. Chem. C 2007, 111, 14628.
  14. Britt, J.; Ferekides, C. Appl. Phys. Lett. 1993, 62, 2851. https://doi.org/10.1063/1.109629
  15. Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, 3488. https://doi.org/10.1021/nl802476m
  16. Nann, T.; Ibrahim, S. K.; Woi, P.-M.; Xu, S.; Ziegler, J.; Pickett, C. J. Angew. Chem. Int. Ed. 2010, 49, 1574. https://doi.org/10.1002/anie.200906262
  17. Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Nature 2006, 442, 180. https://doi.org/10.1038/nature04855
  18. Wuister, S. F.; Driel, F. V.; Meijerink, A. Phys. Chem. Chem. Phys. 2003, 5, 1253. https://doi.org/10.1039/b211953f
  19. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854. https://doi.org/10.1021/cm034081k
  20. Bailey, R. E.; Nie, S. J. Am. Chem. Soc. 2003, 125, 7100. https://doi.org/10.1021/ja035000o
  21. Hewa-Kasakarage, N. N.; Gurusinghe, N. P.; Zamkov, M. J. Phys. Chem. C 2009, 113, 4362. https://doi.org/10.1021/jp8106843
  22. Flint, E. B.; Suslick, K. S. Science 1991, 253, 1397. https://doi.org/10.1126/science.253.5026.1397
  23. Suslick, K. S. Science 1990, 247, 1439. https://doi.org/10.1126/science.247.4949.1439
  24. Crum, L. A.; Roy, R. A. Science 1994, 266, 233. https://doi.org/10.1126/science.266.5183.233
  25. Zhu, J.; Koltypin, Y.; Gedanken, A. Chem. Mater. 2000, 12, 73. https://doi.org/10.1021/cm990380r
  26. Byun, K.-T.; Seo, K. W.; Shim, I.-W.; Kwak, H.-Y. Chem. Eng. J. 2008, 135, 168. https://doi.org/10.1016/j.cej.2007.03.085
  27. Lee, S. S.; Byun, K.-T.; Park, J. P.; Kim, S. K.; Lee, J. C.; Chang S.-K.; Kwak H.-Y.; Shim, I.-W. Chem. Eng. J. 2008, 139, 194. https://doi.org/10.1016/j.cej.2007.09.046
  28. Park, J. P.; Kim, S. K.; Park, J. Y.; Ahn, S.-D.; Ok, K. M.; Kwak, H.-Y.; Shim, I.-W. Thin Solid Films 2009, 517, 6663. https://doi.org/10.1016/j.tsf.2009.05.003
  29. Park, J.-Y.; Park, J. P.; Hwang, C. H.; Kim, J.; Chio, M. H.; Ok, K. M.; Kwak, H.-Y.; Shim, I.-W. Bull. Korean Chem. Soc. 2009, 30, 2713. https://doi.org/10.5012/bkcs.2009.30.11.2713
  30. Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; John Wiley and Sons: New York, 1974.

Cited by

  1. One-pot synthesis of CdTe quantum dots using tellurium dioxide as a tellurium source in aqueous solution vol.291, pp.6, 2013, https://doi.org/10.1007/s00396-012-2860-2
  2. Effect of temperature and pressure on selected artists' pigments vol.37, pp.12, 2013, https://doi.org/10.1039/c3nj00955f
  3. Characteristics of LiFePO4/C composite prepared by sonochemical method under multibubble sonoluminescence vol.33, pp.2, 2016, https://doi.org/10.1007/s11814-015-0178-8
  4. Facile organic surfactant removal of various dimensionality nanomaterials using low-temperature photochemical treatment vol.9, pp.2, 2019, https://doi.org/10.1039/C8RA08173E
  5. Preparation of PbS-coated CdTe Nanocrystals through Sonochemical Reaction vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.680
  6. Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions vol.42, pp.29, 2011, https://doi.org/10.1039/c3dt50849h
  7. Syntheses of Cu2SnSe3 and Their Transformation into Cu2ZnSnSe4 Nanoparticles with Tunable Band Gap under Multibubble Sonoluminescence Conditions vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2331
  8. A Simple Synthesis, Characterization, and Properties of Poly(methyl methacrylate) Grafted CdTe Nanocrystals vol.618, pp.1, 2011, https://doi.org/10.1080/15421406.2015.1076305
  9. Facile Sonochemical Synthesis and Characterization of CdTe Nanoparticles vol.45, pp.10, 2011, https://doi.org/10.1080/15533174.2013.865218
  10. Facile Synthesis of CdTe Nanorods from the Growth of Te Nanorods vol.61, pp.4, 2011, https://doi.org/10.5012/jkcs.2017.61.4.185