References
- Clark, J. H.; Rhodes, C. N. Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents; Royal Society of Chemistry: Cambridge, 2000.
- Gerard, V. S.; Notheisz, F. Heterogeneous Catalysis in Organic Chemistry; Elsevier: San Diego, Calif, 2000.
- Rafiee, E.; Rashidzadeh, S.; Azada, A. J. Mol. Catal. A: Chem. 2007, 261, 49. https://doi.org/10.1016/j.molcata.2006.07.058
- Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1483. https://doi.org/10.1016/j.cclet.2007.10.013
- Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
- Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
- Kozhevinkov, I. V. In Catalysis by Poly Oxometalates; Wiley: Chichester, 2002; p 2-22.
- Hajipour, A. R.; Ruoho, A. E. Tetrahedron Lett. 2005, 46, 8307. https://doi.org/10.1016/j.tetlet.2005.09.178
- Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 269, 53. https://doi.org/10.1016/j.molcata.2006.12.039
- Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. https://doi.org/10.1016/j.cclet.2008.01.037
- Khan, A. T.; Ghosh, S.; Choudhury, L. H. Eur. J. Org. Chem. 2006, 9, 2226.
- Zeinali-Dastmalbaf, M.; Davoodnia, A.; Heravi, M. M.; Tavakoli-Hoseini, N.; Khojastehnezhad, A.; Zamani, H. A. Bull. Korean Chem. Soc. 2011, 32, 656. https://doi.org/10.5012/bkcs.2011.32.2.656
- Khojastehnezhad, A.; Davoodnia, A.; Bakavoli, M.; Tavakoli- Hoseini, N.; Zeinali-Dastmalbaf, M. Chin. J. Chem. 2011, 29, 297. https://doi.org/10.1002/cjoc.201190081
- Li, H.; Yua, X.; Tua, S. T.; Yanb, J.; Wanga, Z. Appl. Catal. A 2010, 387, 215. https://doi.org/10.1016/j.apcata.2010.08.030
- Lewis, J. R. Nat. Prod. Rep. 2002, 19, 223. https://doi.org/10.1039/b007741k
- Ho, J. Z.; Hohareb, R. M.; Ahn, J. H.; Sim, T. B.; Rapoport, H. J. Org. Chem. 2003, 68, 109. https://doi.org/10.1021/jo020612x
- Misono, M. Chem. Commun. 2001, 1141.
- Black, J. W.; Durant, G. J.; Emmett, J. C.; Ganellin, C. R. Nature 1974, 248, 65. https://doi.org/10.1038/248065a0
- Ucucu, U.; Karaburun, N. G.; Iskdag, I. Il Farmaco 2001, 56, 285. https://doi.org/10.1016/S0014-827X(01)01076-X
- Antolini, M.; Bozzoli, A.; Ghiron, C.; Kennedy, G.; Rossi, T.; Ursini, A. Bioorg. Med. Chem. Lett. 1999, 9, 1023. https://doi.org/10.1016/S0960-894X(99)00112-2
- Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinsky-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697. https://doi.org/10.1021/jm010523x
- Lee, J. C.; Laydon, J. T.; McDonnell, P. C.; Gallagher, T. F.; Kumar, S.; Green, D.; McNully, D.; Blumenthal, M.; Heys, J. R.; Landvatter, S. W.; Strickler, J. E.; McLauhlin, M. M.; Siemens, I. R.; Fisher, S. M.; Livi, J. P.; White, J. R.; Adams, J. L.; Young, P. R. Nature 1994, 372, 739. https://doi.org/10.1038/372739a0
- Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363. https://doi.org/10.1016/j.tet.2006.11.001
- Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39. https://doi.org/10.1021/cr940472u
- Heravi, M. M.; Derikvand, F.; Haghighi, M. Monatsh. Chem. 2008, 139, 31. https://doi.org/10.1007/s00706-007-0736-9
- Hasaninejad, A.; Zare, A.; Shekouhy, M.; Ameri Rad, J. J. Comb. Chem. 2010, 12, 844. https://doi.org/10.1021/cc100097m
- Shaterian, H. R.; Ranjbar, M. J. Mol. Liq. 2011, 160, 40. https://doi.org/10.1016/j.molliq.2011.02.012
- Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
- Nagarapu, L.; Apuri, S.; Kantevari, S. J. Mol. Catal. A: Chem. 2007, 266, 104. https://doi.org/10.1016/j.molcata.2006.10.056
- Kantevari, S.; Vuppalapati, S. V. N.; Biradar, D. O.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 266, 109. https://doi.org/10.1016/j.molcata.2006.10.048
- Sharma, S. D.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008, 49, 2216. https://doi.org/10.1016/j.tetlet.2008.02.053
- Karimi-Jaberi, Z.; Barekat, M. Chin. Chem. Lett. 2010, 21, 1183. https://doi.org/10.1016/j.cclet.2010.06.012
- Sadeghi, B.; Mirjalili, B. B. F.; Hashemi, M. M. Tetrahedron Lett. 2008, 49, 2575. https://doi.org/10.1016/j.tetlet.2008.02.100
- Lantos, I.; Zhang, W.-Y.; Shui, X.; Eggleston, D. S. J. Org. Chem. 1993, 58, 7092. https://doi.org/10.1021/jo00077a033
- Balalaie, S.; Hashemi, M. M.; Akhbari, M. Tetrahedron Lett. 2003, 44, 1709. https://doi.org/10.1016/S0040-4039(03)00018-2
- Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
- Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
- Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Chin. J. Chem. 2010, 28, 429. https://doi.org/10.1002/cjoc.201090091
- Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
- Davoodnia, A. Asian J. Chem. 2010, 22, 1595.
- Hammoudeh, A. Y.; Saada, S. M.; Mahmoud, S. S. Jordan J. Chem. 2007, 2, 53.
- Hammoudeha, A.; Mahmouda, S. S.; Gharaibeh, S. Appl. Catal. A: General 2003, 243, 147. https://doi.org/10.1016/S0926-860X(02)00559-8
- Wana, H.; Li, D.; Dai, Y.; Hu, Y.; Liu, B.; Dong, L. J. Mol. Catal. A: Chem. 2010, 332, 32. https://doi.org/10.1016/j.molcata.2010.08.016
Cited by
- ChemInform Abstract: Alumina Supported Ammonium Dihydrogenphosphate (NH4H2PO4/Al2O3): Preparation, Characterization and Its Application as Catalyst in the Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles. vol.42, pp.46, 2011, https://doi.org/10.1002/chin.201146124
- The Use of Supported Acidic Ionic Liquids in Organic Synthesis vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078840
- A rapid, efficient, and high-yielding synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives catalyzed by 12-tungstophosphoric acid (H3PW12O40) vol.41, pp.11, 2015, https://doi.org/10.1007/s11164-014-1896-y
- ]chromenes vol.30, pp.8, 2016, https://doi.org/10.1002/aoc.3479
- Copper(I) complex of 1,3-DimethylBarbituric acid modified SBA-15 and its catalytic role for the synthesis of 2,3-Dihydroquinazolin-4(1H)-ones and Imidazoles vol.31, pp.12, 2017, https://doi.org/10.1002/aoc.3843
- Oxidative Desulfurization of Diesel Fuel Using a Brønsted Acidic Ionic Liquid Supported on Silica Gel vol.31, pp.9, 2017, https://doi.org/10.1021/acs.energyfuels.6b03505
- Synthesis and biological evaluation of 1,2,4,5-tetrasubstituted imidazoles vol.43, pp.8, 2017, https://doi.org/10.1007/s11164-017-2886-7
- -chromene-3-carboxamides Catalyzed by a Keplerate-type Giant Nanoporous Isopolyoxomolybdate vol.50, pp.6, 2018, https://doi.org/10.1080/00304948.2018.1537732
- An Efficient Method for Knoevenagel Condensation Catalyzed by Tetrabutylammonium hexatungstate [TBA]2[W6O19] as Novel and Reusable Heterogeneous Catalyst vol.42, pp.7, 2012, https://doi.org/10.1080/15533174.2012.680140
- Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2140
- Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2724
- Nano α-Al2O3supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): preparation, characterization and its applicati vol.4, pp.81, 2011, https://doi.org/10.1039/c4ra07813f
- Performance Evaluation of Newly Prepared Alumina Supported Polyphosphoric Acid (PPA/Al2O3) as Efficient and Reusable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines vol.44, pp.1, 2011, https://doi.org/10.1080/15533174.2013.768645
- New Conditions for the Effective Synthesis of Tri and Tetrasubstituted Imidazoles Catalysed by Recyclable Indium (III) Triflate and Magnesium Sulfate Heptahydrate vol.38, pp.1, 2011, https://doi.org/10.3184/174751914x13863406090407
- Catalytic performance of a Keplerate-type, giant-ball nanoporous isopolyoxomolybdate as a highly efficient recyclable catalyst for the synthesis of biscoumarins vol.71, pp.3, 2011, https://doi.org/10.1515/znb-2015-0151
- Another application of newly prepared Brønsted-acidic ionic liquids as highly efficient reusable catalysts for neat synthesis of amidoalkyl naphthols vol.3, pp.1, 2011, https://doi.org/10.1080/23312009.2017.1312675
- Synthesis and characterization of nano-copper ferrite as a magnetically separable catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles under solvent-free vol.47, pp.5, 2011, https://doi.org/10.1080/15533174.2016.1212223
- K2CO3/Al2O3: An efficient and recyclable catalyst under solvent free conditions for the reaction of electron-deficient nitro-olefins with 1,3-dicarbonyl com vol.4, pp.1, 2011, https://doi.org/10.1080/23312009.2018.1455346
- Phosphomolybdic acid supported on Schiff base functionalized graphene oxide nanosheets: Preparation, characterization, and first catalytic application in the multi‐component synthesis of tetrahy vol.33, pp.5, 2019, https://doi.org/10.1002/aoc.4881
- Catalytic Synthesis of 1,2,4,5‐Tetrasubstituted 1H‐Imidazole Derivatives: State of the Art vol.361, pp.12, 2011, https://doi.org/10.1002/adsc.201801381
- K2CO3/Al2O3: An Efficient and Recyclable Catalyst for One-Pot, Three Components Synthesis of α-Aminophosphonates and Bioactivity Evaluation vol.31, pp.10, 2019, https://doi.org/10.14233/ajchem.2019.22194
- Novel water‐soluble polymer coatings control NPK release rate, improve soil quality and maize productivity vol.138, pp.42, 2021, https://doi.org/10.1002/app.51239
- Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation vol.28, pp.None, 2021, https://doi.org/10.1016/j.csite.2021.101628
- Feasibility study of using MWCNT-TiO2 (25:75) in 5W50 as an optimizer for engine oils with the aim of reduce the cold start damages vol.129, pp.None, 2011, https://doi.org/10.1016/j.icheatmasstransfer.2021.105678
- A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System vol.13, pp.23, 2021, https://doi.org/10.3390/su132313187
- A state of art review of the viscosity behavior of nano-lubricants containing MWCNT nanoparticles: Focusing on engine lubrication goals vol.346, pp.None, 2022, https://doi.org/10.1016/j.molliq.2021.118264
- A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations vol.15, pp.2, 2011, https://doi.org/10.1016/j.arabjc.2021.103598
- A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations vol.15, pp.2, 2011, https://doi.org/10.1016/j.arabjc.2021.103598