DOI QR코드

DOI QR Code

A Predictive Study on Molecular and Explosive Properties of 1-Aminoimidazole Derivatives

  • Received : 2011.04.07
  • Accepted : 2011.05.03
  • Published : 2011.07.20

Abstract

Molecular structures and chemical properties of 1-aminoimidazole derivatives have been investigated at high levels of density functional theories. Heat of formation, density, explosive performances and impact sensitivities have been estimated at the global minimum of potential energy surface. As more nitro groups are introduced, the explosive performances of 1-aminoimidazole derivatives are enhanced, while the impact sensitivity becomes more sensitive. A two-dimensional plot between explosive performance and impact sensitivity has been utilized to comprehend the technical status of new explosive candidates. Based on locations in the two-dimensional plot, 1-aminodinitroimidzole isomers appears to have a potential to be good candidates for insensitive explosives, and 1-aminotrinitroimidazole may become a powerful explosive molecule whose behavior is quite close to HMX.

Keywords

References

  1. Nitroimidazoles: Chemistry, Pharmacology, and Clinical Application; Breccia, A., Cavalleri, B., Adams, G. E., Eds.; Plenum Press: New York, N.Y., 1982.
  2. Boyer, J. H. Nitroazoles; The CNitro Derivatives of Five-Membered N- and N,O-Heterocycles; VCH Publishers, Inc.: Deerfield Beach, FL, 1986, Chapter 2.
  3. Organic Energetic Compounds; Marinkas, P. L., Ed.; Nova Science Publishers, Inc.: Commack, N.Y., 1996.
  4. Grimmett, M. R. Imidazole and Benzimidazole Synthesis; Academic Press: London, UK, 1997.
  5. Katritzky, A. R.; Pozharskii, A. F. Handbook of Heterocyclic Chemistry, 2nd ed.; Pergamon: Amsterdam, The Netherlands, 2000.
  6. Akhavan, J. The Chemistry of Explosives, 2nd ed.; The Royal Society of Chemistry: Cambridge, UK, 2004.
  7. Coburn, M. D. Ammonium 2,4,5-Trinitroimidazole; U.S. Patent 4,028,154, 1977.
  8. Grimmett, M. R.; Hua, S.-T.; Chang, K.-C.; Foley, S. A.; Simpson, J. Aust. J. Chem. 1989, 42, 1281. https://doi.org/10.1071/CH9891281
  9. Damavarapu, R.; Jayasuriya, K.; Vladimroff, T.; Iyer, S. 2,4- Dinitroimidazole - A Less Sensitive Explosive and Propellant Made by Thermal Rearrangement of Molten 1,4-Dinitroimidazole; U.S. Patent 5,387,297, 1995.
  10. Bracuti, A. J. J. Chem. Crystallogr. 1995, 25, 625. https://doi.org/10.1007/BF01665967
  11. Agarawal, J. P. Prog. Energy Combust. Sci. 1998, 24, 1. https://doi.org/10.1016/S0360-1285(97)00015-4
  12. Cho, J. R.; Kim, K. J.; Cho, S. G.; Kim, J. K. J. Heterocyclic Chem. 2002, 39, 141. https://doi.org/10.1002/jhet.5570390121
  13. Cho, S. G.; Cho, J. R.; Goh, E. M.; Kim, J.-K.; Damavarapu, R.; Surapaneni, R. Propel. Explos. Pyrotech. 2005, 30, 445. https://doi.org/10.1002/prep.200500040
  14. Talawar, M. B.; Sivabalan, R.; Anniyappan, M.; Gore, G. M.; Asthana, S. N.; Gandhe, S. N. Combust., Expl., Shock Waves 2007, 43, 62. https://doi.org/10.1007/s10573-007-0010-9
  15. da Silva, G.; Bozzelli, J. W. J. Org. Chem. 2008, 73, 1343. https://doi.org/10.1021/jo701914y
  16. Su, X.; Cheng, X.; Meng, C.; Yuan, X. J. Hazard. Mater. 2009, 161, 551. https://doi.org/10.1016/j.jhazmat.2008.03.135
  17. Cho, S. G.; Park, B. S.; Cho, J. R. Propel. Explos. Pyrotech. 1999, 24, 343. https://doi.org/10.1002/(SICI)1521-4087(199912)24:6<343::AID-PREP343>3.0.CO;2-P
  18. Cho, S. G.; Park, B. S. Int. J. Quantum Chem. 1999, 72, 145. https://doi.org/10.1002/(SICI)1097-461X(1999)72:2<145::AID-QUA7>3.0.CO;2-0
  19. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford, CT, 2004.
  20. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
  21. Young, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-world Problems; John Wiley & Sons: New York, NY, 2001.
  22. Koch, W.; Holthausen, M.C. A Chemist's Guide to Density Functional Theory, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2001.
  23. Habibollahzadeh, D.; Grice, M. E.; Concha, M. C.; Murray, J. S.; Politzer, P. J. Comput. Chem. 1995, 5, 654.
  24. Cho, S.G., to be published.
  25. Charlton, M. H.; Docherty, R.; Hutchings, M. G. J. Chem. Soc., Perkin Trans. 2 1993, 2023.
  26. Ammon, H. L. Struct. Chem. 2001, 12, 205. https://doi.org/10.1023/A:1016607906625
  27. Murray, J. S.; Brinck, T.; Politzer, P. Chem. Phys. 1996, 204, 289. https://doi.org/10.1016/0301-0104(95)00297-9
  28. Kim, C. K.; Lee, K. A; Hyun, K. H.; Park, H. J.; Kwack, I. Y.; Kim, C. K.; Lee, H. W.; Lee, B.-S. J. Comput. Chem. 2004, 25, 2073. https://doi.org/10.1002/jcc.20129
  29. Fried, L. E.; Howard, W. M.; Souers, P. C. Cheetah 2.0 User Manual; Lawrence Livermore National Laboratory Report UCRL MA 117541 Rev. 5, 1998.
  30. Cho, S. G.; No, K. T.; Goh, E. M.; Kim, J. K.; Shin, J. H.; Joo, Y. D.; Seong, S. Bull. Korean Chem. Soc. 2005, 26, 399. https://doi.org/10.5012/bkcs.2005.26.3.399
  31. Nefati, H.; Cense, J.-M.; Legendre, J.-J. J. Chem. Inf. Comput. Sci. 1996, 36, 804. https://doi.org/10.1021/ci950223m
  32. Maana, M. R.; Gee, R. H.; Fried, L. E. J. Phys. Chem. A 2002, 106, 8806. https://doi.org/10.1021/jp0259972
  33. Holden, J. R.; Du, Z.; Ammon, H. L. Structure and Density Predictions for Energetic Materials. In Energetic Materials. Part 1. Decomposition, Crystal and Molecular Properties; Politzer, P.; Murray, J. S., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; p. 185.
  34. Gavezzotti, A. Acc. Chem. Res. 1994, 27, 309. https://doi.org/10.1021/ar00046a004
  35. Dunitz, J. D. Chem. Commun. 2003, 545.
  36. Kim, C. K.; Cho, S. G.; Lee, K. A.; Kim, C. K.; Park, H.-Y.; Zhang, H.; Lee, H. W.; Lee, B.-S. J. Comput. Chem. 2008, 29, 1818. https://doi.org/10.1002/jcc.20943
  37. Allen, F. H. Acta Cryst. B58 2002, 380.

Cited by

  1. and -F Groups vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1913
  2. Predictive analysis on explosive performance of methylnitroimidzole derivatives vol.28, pp.5, 2015, https://doi.org/10.5806/AST.2015.28.5.347
  3. Identifying high energy molecules and predicting their detonation potency using chemometric modelling approaches vol.19, pp.4, 2011, https://doi.org/10.1080/13647830.2015.1043747
  4. Correlation between molecular charge densities and sensitivity of nitrogen-rich heterocyclic nitroazole derivative explosives vol.25, pp.10, 2019, https://doi.org/10.1007/s00894-019-4195-0