Proceedings of the Korean Geotechical Society Conference (한국지반공학회:학술대회논문집)
- 기타
2000.03b
-
An analytical solution method capable of determining the geometric configuration and developed tensile forces of mooring lines associated with fixed plate/pile or drag anchors is presented. The solution method, satisfying complete equilibrium conditions, is capable of analyzing multi-segmented mooring lines that can consist of either chains, cables, or wires embedded in layered seafloor soils. Centrifuge model tests and full -scale field tests were used to calibrate and validate the analytical solution.
-
Reduced-Scale Model Tests on the Behavior of Tunnel Face Reinforced with longitudinal reinforcementsThis paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.
-
In excavation of tunnels especially located in shallow depth, it is not rare to meet geological change in excavation progress worse than expected in the initial design stage. This paper present a case study on the re-design of excavation and support system of a shallow tunnel under construction where it meets the unexpected bad geological condition during excavation. The detailed geological investigation shows that the rock mass is heavily weathered and fractured with RMR value less than 20. Considering this geological condition, the design concept is focused on the reinforcement of the ground preceding the excavation of tunnel. Two design patterns, LW-grouting & forepoling with pilot tunnelling method and the steel pipe reinforced grouting method, are suggested. Numerical analysis by FLAC shows that these two patterns give the tunnel and roof ground stable in excavation process while the original design causes severe failure zone around the tunnel and floor heaving. In point of the mechanical stability and the degree of construction, the steel pipe reinforced grouting technique proved to be good for the reinforcement of heavily fractured rock mass in tunnelling. This assessment and design process would be a guide in the construction of tunnels in heavily weathered and fractured rock mass situation.
-
In this study, we used photoelastic coating method which is a kind of model test for examining the stress condition of rock masses around underground structures. Using this method, we could know adaptability and usefulness of photoelastic coating method for various shape of tunnel models. And, in spite of higher cross section efficiency, square shape model showed unstable status because of high stress concentration. So, we cut the slits at the each corner of tunnel, and we could make more stable stress condition by means of moving high stress concentration to rock mass.
-
In this study, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river, This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.
-
Rippability refers to the ease of excavation by construction equipment. Since it is related to rock quality in terms of hardness and fracture density, which may be measured by seismic refraction surveys, correlations have been made between rippability and seismic P wave velocities. The 1-channel signal enhancement seismograph(Bison, Model 1570C) was used to measure travel time of the seismic wave through the ground, from the source to the receiver. The seismic velocity measurement was conducted with 153 lines at 5 rock slopes of Chungbuk Youngdong area. Schmidt rebound hardness test were conducted with 161 points on rock masses and the point load test also on 284 rock samples. The uniaxial compressive strength and seismic wave velocity of 60 rock specimens were measured in laboratory. These data were used to evaluate the rock quality of 5 rock slopes.
-
This paper presents the construction planning and the detail design of a 16.2 km long railroad tunnel in a mountainous area. Major design conditions for railroad are the single track, loop-typed alinement, and a maximum grade of 24.5
$\textperthousand$ . A underground station(double track) with a length of 1.1km is located in the middle of the line for train cross-passing. Tunnel is excavated in highly complex geological conditions including faulted areas, abandoned mine works areas, and various rock types such as sandstone, shale, limestone, and coal seam partly. Drilling and blasting method was adopted because it is more flexible than TBM(Tunnel Boring Machine) as a result of risk assessment for geological conditions in this area. Two working adits were planned to adjust the construction schedule and can be used for ventilation and maintenance in operation phase. New material and concept were introduced to the tunnel drain design. They are expected to improve tunnel drain condition and capability. Rational tunnel support design was tried to consider the various tunnel size and purpose and to use the geological investigation results. -
This study presents the application of genetic algorithms(GA) to the back analysis of tunnels. GA based on the theory of natural evolution, and have been evaluated very effective for their robust performances, particularly for optimizing structure problems. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. GA can improve this problems through a probabilistic approach. Besides, this technique have two other advantages over the back analysis. One is that it is not significantly affected by the form of problems. Another one is that it can consider two known parameter simultaneously. The propriety of this study is verified as the comparison in the same condition of the back analysis(Gens et al, 1987). In this study, it was performed to estimated the geotechnical parameters in the case of weak rock mass at the Kyung Bu Express railway tunnel. GA have been shown for effective application to a geotechnical engineering.
-
Drilling and blasting method for excavating rock mass is generally used in underground construction; but this technique has some shortcomings. For instance, rock mass damage is inevitable during drilling and blasting, and blast-induced vibration frequently causes some problems. Until now, field measurement method is used to predict the overbreak and vibration; but it has many limitations. Therefore, numerical analysis method is needed to overcome such limitations, and to estimate and predict damage and vibration due to tunnel blasting in the design stage. In this study, damage zone of rock mass due to stoping and contour blasting is compared based on standard tunnel blasting pattern, and the propriety of the standard tunnel blasting pattern is estimated. Then, blasting pattern is optimized so that the damage zone due to sloping blasting with reduced charge is consistent with that due to contour blasting.
-
In this study, differential settlements of adjacent structure and behaviour of ground during tunnel excavation and the effect of micropile installed to preserve differential settlement of structure are measured and analyzed by model test. In the test results, the effective range of reinforcement is suggested.
-
The lateral deformation of one row pile groups was investigated based on analytical study and a numerical analysis. The emphasis was on quantifing the load transfer of pile groups subjected to lateral soil movement. An analytical method to consider pile-soil interaction in weathered soil was developed using load-transfer curve methods. Through the comparative study, it is found that the prediction by present approach is in good agreement with the general trend observed by in-situ measurements.
-
Non-destructive out-hole tests, impact-echo and impact-response are widely applied to evaluate integrity of drilled shafts. In these tests, vibratory motions of drilled shafts are interpreted, which induced by impacts on the shaft head. In applying the tests to evaluating integrity of shaft, it has been attended whether the tests have resolutions enough to distinguish existence of slime at between the shaft end and a bearing soil deposit. To distinguish existence of slime by tests, modes of shaft vibrations need to be reasonably interpreted, which generally vary according to a shaft boundary condition such as, a free-free or a free-fixed condition. The boundary condition of a shaft is, however, found to be significantly affected by stiffness of soil deposits around shaft as well as penetration depths of shaft into a bearing soil deposit. Thus, these effects on the boundary condition of a shaft should be considered reasonably in interpreting test results to decide the existence of slime. To investigate the effects, in this study, vibratory motions of shafts constructed in various soil conditions and end penetration depths are examined analytically. Based on the studies, variations of boundary condition are characterized in terms of soil stiffness contrast between a shaft perimeter and a shaft end, and also the ratio of a penetration depth to a shaft length. The results can be applied to verify the applicability of tests to identify the slime.
-
In this study, the behaviors of a cast-in-situ concrete pile embedded in the weathered rock were analysed by a 3D numerical analysis using PENTAGON 3D and the results were compared with those of the field load test. The load-settlement relation and the load transfer relationship were evaluated from the numerical analysis. As a result, the load-settlement relation at the pile top and the axial load distribution with depth were predicted reasonably. And those results were similar with those of the field load test.
-
To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.
-
Effective range of Hydraulic Hammer Compaction was studied by numerical analysis instead of empirical method. Numerical analyses were carried out with commercial FEM code, ABAQUS, and verified by comparing the numerical results with field tests of Hydraulic Hammer Compaction. Most of material properties were evaluated by data from laboratory and in-situ tests. Vertical effective range was estimated by distribution curve of plastic strain energy dissipated through soil layers under dynamic load and these results were in good agreement with field tests. Based on verification, the effects of governing properties of Hydraulic Hammer Compaction such as number of hit can be determined by numerical analyses. In addition, vertical effective range can also be determined by Menard's empirical equation using the external work at converging time of plastic strain energy in numerical analysis. This implies that the minimum energy of Hydraulic Hammer Compaction for improvement can be determined by Menard's equation.
-
Dynamic fatigue test is carried out using soil model box for the evaluation of performance of three different roadbed materials. Bearing capacity, settlement and mud pumping phenomenon of each roadbed materials as well as penetration of model ballast into the roadbeds are investigated. It was found that settlement of slag and crushed stone roadbed is smaller than the soil roadbed during dynamic fatigue test with same initial conditions.
-
The grout-effect evaluation of the ground reinforcement technique, which has been widely applied to civil engineering and construction fields, is not established for the guidelines of choosing the efficient evaluation method, and in fact the experts have little effort to determine the reinforcement effect quantitatively. The evaluation of the grout was carried out by experiments on core specimen and drilling, which is impossible to evaluate grout-reinforcement effect quantitatively. This paper presents an example on verification of FRP grout-effect using geophysical prospecting on ground surface, which is 2D resistivity survey that easily visualize survey results with color graphics and seismic refraction method that interprets the subsurface seismic velocity structure.
-
Sand Compaction Pile method is one of the widely used ground improvement techniques at loose sand or soft clay ground in Asian countries. However, due to environmental and economical problems concerning shortage of sand resources alternative materials are needed to substitute sand for SCP. This study is on the applicability of slag as an alternative material SCP. Consolidation and direct shear test are performed for the slag-clay composite specimens to find out the positive effects of consolidation rate and shear resistance of slag reinforced ground. The result shows that slag has similar effects with sand in consolidation and shear resistance behavior in composite ground, which says slag can be used as alternative material of sand for SCP.
-
The reinforced roadbed should have the ability to spread out the load intensity lower than the bearing capacity of the subgrade of track structure as well as to prevent the softening of roadbed by providing appropriate stiffness in the roadbed, thus fully supports the track structures. Full scale reinforced roadbeds with several different types of monotoring sensors was also constructed to evaluate the performance of each reinforced roadbed through the continuous monitoring while the train operation. In this study, Field tests such as PLT, SASW were also carried out at each reinforced roadbed. The results of the field and lab tests, installation and calibration of sensors, as well as construction condition of the reinforced roadbed are presented.
-
Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. The in-situ tests were carried out to utilize gravel as a substitute for sand. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed, The clogging effect was checked at various depth in gravel column after the test. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.
-
Sand piling method is one of the most widely used methods to improve soft soils. There are several methods to install sand piles, but driven pile method is considered as one of the easiest method. This method simply pushes down the sand piles into soft soils, so that the excess pore pressure would be generated if the soil is saturated. This pore pressure acts as consolidation load. If the amount of sand pile induced pore pressure can be predicted in reasonable ways, the effects of sand piling to improve soft soils would be predicted, and the height of preload can be reduced. In this article, sand pile induced excess pressure was predicted by cavity expansion theory, and the predicted values were compared with the field measured values. The results showed fair agreements between the measured and the predicted excess pore pressure.
-
It has been generally much fine contents in West Coast of Korea. When cyclic shear stress causing liquefaction was estimated as using cyclic triaxial tests in these grounds, it didn't appear linear relations between deviator stress and confining stress where σ'₃ was more than 150 kpa. Namely, due to no normalization of cyclic shear stress ratio, the errors of this is increased. Therefore, more confining stress is increased, more increment of deviator stress is decreased. So, using linear relations between tanø'/sub d/ of dynamic internal friction angle and CSR where σ'₃ was less than 150 kpa, liquefaction of these grounds was evaluated. Also, as doing detail evaluation which had carried response analysis of earthquake, this appeared good results which was well compatible with empirical methods using N-value of SPT. It was thought that these result evaluated vulnerable liquefaction area more correct than existing methods. Also, characteristics of liquefaction in West Coast grounds was compared with clean sands, with analysis of behavior of pore pressure ratio and axial strain affected by fine contents, as cyclic loading was applied.
-
In this study, the reinforcing effect of micropile for weathered rock is analysed by laboratory model tests. Especially, the effect of the number, the surface roughness, and length of micropile are focused. The results of tests are as follows:
$\circled1$ The deformation modulus of reinforced ground is less than equivalent deformation modulus, and$\circled2$ Increasing effect of unconfined compressive strength is not large as times as increasing the number of micropile. -
Shaking table tests were peformed to evaluate the subgrade reaction of ground according to the build-up of pore water pressure. Model pile was installed in the sand ground. The acceleration of the model ground, the pore water pressure build-up and displacement of pile were recorded by measuring devices. Subgrade reaction approach based on Winker soil model was applied to obtain the modulus of the horizontal subgrade reaction. The results of analysis show that the reduction factor of the subgrade reaction due to pore pressure increase is about 1 and the horizontal subgrade reaction of liquefied ground is not influenced by the stiffness of pile, a ground acceleration and the intial ground density.
-
This study introduces the current theory of the SWCC and tries to verify the theory by performing laboratory tests for the local soils of Korea. First, the SWCCs of Poi-dong soil and Shinnae-dong soil, the most typical weathered residual soils in Korea, were experimentally obtained and the results were compared among others. Second, a SWCC model for deformable soils was proposed. For deformable soils, which show huge volume change during desaturation, the volume change behavior should be considered, and the SWCC should be expressed as a function of void ratio as well as suction.
-
In recent years there has been a steady increase in geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation of contaminant in the ground. There are many techniques such as geophysical, drilling, sampling, md pushing techniques for investigation of contaminated ground. The most rapidly developing site characterization techniques for geoenvironmental purposes involve direct push technology, that is, penetration tests. The purpose of this study investigated underground oil storage tanks(USTs) using the envi-cone penetrometer system. The electrical resistivity sensor, pH sensor, ORP sensor, and thermometer are installed in envi-cone penetrometer system. This envi-cone penetrometer system provides a continuous profile of measurements, and it is rapid, repeatable, reliable and cost effective for investigation of contaminated ground surrounding the underground oil storage tanks.
-
In this study, we tried to determine failure criteria for joints of soft rock using ring shear test machine. The residual stress fellowing shear behavior was determined by the result of ring shear test and direct shear test. Ring shear test with the specimens which cover a large deformation range was adapted to measure a residual stress, and was possible to present the peak stress to present the peak stress to the residual stress at the same time. Residual stress is defined a minimal stress of specimens with a large displacement and the result of the peak residual stress is shown by a size of displacement volume. Therefore, the residual stress in soil was decided by shear stress of maximum shear stress - shear displacement(angle) based on the test result of a hyperbolic function ((equation omitted), a, b = experimental constant). In this study, it was proved that the residual stress of rock joint can be determined by using of this method.
-
This paper summarizes the results of a study which has quantified the evolution of the structure of sands adjacent to geomembranes of varying roughness at different stages of shearing. The results show that the structure evolution, and hence shear mechanisms for rounded uniform sands adjacent to geomembranes, are directly influenced by the surface roughness of the geomembranes. For smooth geomembranes, the shear mechanism predominantly involves sliding of sand particles and only affects the sand structure within two particle diameters of the geomembrane. For slightly textured geomembranes, the effects of interlocking and dilation of sand particles extends the zone of evolution to four particles diameters from the interface. For moderately/heavily textured geomembranes, the interlocking and dilation of sand particles is fully developed and results in large dilation in the interfacial zone, which extends up to six particle diameters from the interface. By understanding how the structure of the sand adjacent to geomembranes of different roughness changes during shearing, it may be possible to identify alternative geomembrane roughening procedures and patterns that can lead to more efficient interface designs.
-
This paper reports the application of GPS (Global Positioning System) technique into the geotechnical information system. Typical example of such application can be the database of logging data. Other examples can be found from the surveying for road work, excavation work, landslide mapping and image processing of slope face. This paper also reports the enhancement method of the accuracy. The results from this study confirms that GPS could be a powerful tool for the future geotechnical investigation works in Korea.
-
By means of analyzing of monitoring technology and monitoring regulation based on maintenance monitoring system installed in subway tunnel section, it needs monitoring system, development of operating program, monitoring analyzing system and development of analysis method, establishment of maintenance monitoring standard specification, and performance of responsible monitoring supervision for applying to subway monitoring maintenance effectively in future. It requires specialized monitoring and legislation of monitoring subcontract, improvement of monitoring work contract method, establishment the standard payment of monitoring, and effective calibration and correction of monitoring system in the plan of improving monitoring regulation.
-
When highly compressible, clayey soil layers lies at a limited depth and large consolidtion settlements are expected as the result of construction, precompression of soil may be used to minimize postconstruction settlement. In this study, we tried to find the possibility about the effect of ground improvement using flat dilatometer at the Inchon International Airport where preloading was installed. Field and laboratory tests were performed for soft ground before and after preloading in order to check the effectiveness of the soft ground improvement and compared with the test results of dilatometer which obtained before and after preloading at the same location Field tests such as flat dilatometer, vane, CPTu tests were performed before and after preloading and undisturbed samples are obtained to carry out laboratory tests. As comparing results, after preloading, unit weight, effective stress, undrained shear strength were increased and we can also check the decrease of consolidation late caused of decrease of void ratio. Furthermore, it is assumed that the possibility on the effect of ground improvement by using the flat dilatometer
-
In this study, ten drilled shafts were constructed for evaluating the application of NDT(Non-Destructive Testing) techniques. The drilled shafts, 0.4 m in diameter and 7.0 m in length, were constructed at Namyangju site in Namyangju City. One of the shafts was constructed with no defect, and the other shafts were constructed with the defects of soft bottom, necking, bulging, cave-in and/or weak concrete. Then, these techniques were applied to the bridge foundations for studying unknown bridge foundation characteristics.
-
In general steel sheet pile use the containment system, vertical barrier systems for waste disposal and landfill purposes, roads in excavation which have a more permanent character or temporary structure. The sheet pile joints between section of the wall are sealed with a filter material arid the resistance to seepage is a function of the type of material employed. The aim of this paper is to review a characteristic of permeability for Z type sheet pile by field test in various condition.
-
When microorganism is injected into porous medium such as soils, biomass retained in the pore. Bacteria within these microcolonies produced large amounts of exopolysaccharides and formed a plugging biofilm. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced and friction rate between soil aggregates increased. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrate and nutrient. Also, pore sand of before and after biofilm formation compared with scanning electron microscopy. Hydraulic conductivity of Sand and Poorly Graded Sand was decreased approximately 1/10∼1/100 after biomass inoculation and cultivation. Biofilm attached on soil aggregates is resistant to acidic or basic condition.
-
In this study, applicability of PMT in domestic area and test procedure were studied. At six test holes of three construction sites in Pusan, PMT using Elastometer-200 type was done. The problems during test were investigated and the test results were analysed. Limit pressure, p
$\sub$ ι/ could be determined by p- Δv/v method. Using PMT results, marine soil in Pusan could be classified approximately. Net limit pressure value was in the range of 6.4 ∼ 22.5 kg/$\textrm{cm}^2$ in clay, 2.2 ∼ 30.0 kg/$\textrm{cm}^2$ in sand, 13.0 ∼ 58.0 kg/$\textrm{cm}^2$ in weathered soil and 47.0 ∼ 190.0 kg/$\textrm{cm}^2$ in weathered rock. Also, E$\sub$ m//p$\sub$ ι/ value was in the range of 2.4 ∼ 7.0 in clay, 2.6 ∼ 12.1 in sand, 6.8 ∼ 17.1 in weathered soil and 7.2 ∼ 29.6 in weathered rock. -
The benefit of reinforced roadbeds, such as roadbed reinforced with slag and roadbed with crushed stone has been known among engineers. In this study, model soil box test is executed to determine optimum roadbed thickness. As a result, a empirical solution for the settlement of reinforced roadbeds was suggested. Furthermore, optimum thickness of reinforced roadbed could be determined based on the settlement characteristic of reinforced roadbed among the several variables.
-
This paper starts with reviewing general patterns of deformation of the soft ground with by embankment. Correlation between lateral and vertical deformation of soft ground under embankment are analyzed and discussed by comparing the performance of the Yangsan test embankment on treated soft ground with vertical drains.
-
현장상황에 대한 불충분한 자료와 파괴 메커니즘에 대한 불완전한 이해로 인해 발생하는 가변성(variability)과 불확실성(uncertainty)은 암반사면공학뿐만 아니라 지반공학에서 흔히 접하게 되는 문제점이다. 특히 암반사면공학에서는 이러한 가변성과 불확실성이 불연속면의 방향 및 기하학적 특성, 그리고 실내실험 결과의 분산으로 나타난다. 그러나 안전율(factor of safety)의 개념을 기초로 하는 전통적인 결정론적 해석방법(deterministic analysis)은 이러한 분산을 고려하지 않은 채 단일 대표 값만을 이용하여 구조물의 안정성을 판단하여 왔다. 확률론적 해석방법(probabilistic analysis)은 이러한 가변성과 불확실성을 효과적으로 정량화하여 해석에 이용할 수 있는 방법 중의 하나로 제안되었다. 이러한 해석방법은 불연속면의 기하학적 특성과 강도 특성을 확률변수(random variable)로 취급하여 신뢰성이론(reliability theory)과 확률이론(probability theory)을 근거로 분석하였으며 이를 기초로 하여 Monte Carlo Simulation과 같은 해석법을 이용, 구조물의 붕괴가능성을 확률로 표현하였다. 확률론적 해석 방법은 기존의 안전율을 대체하여 구조물의 안정성을 붕괴확률(probability of failure)로 제안하였으며 이 붕괴확률은 안전율의 확률분포함수 (probability density function)에서 안전율이 1보다 작을 가능성을 확률로 나타낸 수치이다. 본 논문에서는 확률론적 해석방법을 이용하여 불연속면 특성들의 확률특성을 고찰하였으며 이를 기초로 하여 암반사면의 안정성 해석에 응용했다.
-
Zinc galvanized steel plates(sections) of annular corrugations have been used in buried steel culverts. These structures are referred to by a variety of names such as flexible pipes, buried pipes, soil-steel bridges, corrugated steel culverts, and etc. Buried corrugated steel structures show flexible behaviour under the soil load. compared with concrete box structures. Finite element analysis was performed to suggest the reasonable connecting method between the flexible steel culverts and the rigid concrete box. It was predicted that perfectly constrained connections could induce the excessive stress in steel plates. Therefore elastic bearing connections that allow vertical displacement at the connecting point were applied.
-
This paper presents the results of finite element analysis on the seismic response of a soil-reinforced segmental retaining wall subjected to a prescribed earthquake record. The results of finite element analysis indicate that the maximum wall displacement occurs at the top, exhibiting a cantilever type of wall movement. Also revealed is that the increase in reinforcement force is more pronounced in the upper part of the reinforced zone, resulting in a more or less uniform distribution. None of the design guidelines appears to be able to correctly predict the dynamic force increase when compared with the results of finite element analysis. The calculation model adopted by the NCMA guideline, however, appears to compare better with the results of finite element analysis as well as field survey than the FHWA guideline. Based on the findings from this study, a number of implications to the current design methods are discussed.
-
In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of underground structures applied uplift seepage forces. Small scaled pull-out tests in sand were conducted under saturated condition. And then, it was observed that the upward displacement as well as the pullout load varied with spacing of the anchor. Also, analyses have been performed with the aim of pointing out the effects of various parameters on the group effect of the screw anchors.
-
Recently, the deep excavations have been peformed to utilize the under ground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground occurs frequently. The analysis of the retaining structures is necessary to the safety of the excavation works. There are many methods such as elasto-plastic, FEM, and FDM to analyze the displacement of the retaining structure. The elasto-plastic method is generally used in practice. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The program for Windows was used the Visual Basic 6.0, and the Main of the program consists of three subroutines, SUB1, SUB2, and SUB3. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement by the Inclinometer(at three excavation work sites). The excavation method of each site is braced retaining wall using H-pile. Each excavation depth is 14m, 14m, or 8.2m. The results of the analyses are the followings ① In the multi-layer soil, the lateral displacement by the GEBA-1 and EXCAD which is considering the distribution of the strut load is equal to the measured displacement. Elasto-plasto programs can't consider the change of the ground water in clay. Therefore, the analysis displacement was expected only 20% of the measured wall displacement. ③ At the final excavation step, the maximum lateral displacement of analysis and field occurred 7∼18m at the 85∼92% of the excavation depth. ④ The maximum lateral displacement in clay, as 50mm, occurred on the ground surface.
-
In this study, an experimental programme was performed to improve drilling and blasting efficiency, Case study in geologically different strata place showed that a new blasting pattern with different explosive charges and construct procedures to guard a blasted slope should be needed
-
With the limited amount of budget and time, it is required to determine the priority of investment when there are a large number of hazardous slopes. In this paper, the Rock Slope Risk Rating System is developed based on the combination of the hazard of failure and the damage potential. By applying the proposed rating system to 253 rock slopes in Korean National Highway, it was possible to determine the priority of investment on road cut slopes.
-
The purpose of this study is to present the application of WFS co-mixtures for retaining wall as flowable backfill. The fly ash, generated at the Tae-An thermoelectric power plant, was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Couple of laboratory tests and small scale retaining wall tests were performed to obtain the physical properties of the WFS co-mixtures and the possibility of backfill materials of retaining wall. The range of permeability for all the co-mixtures was from 3.0
${\times}$ 10$\^$ -3/ cm/s to 6.0${\times}$ 10$\^$ -5/ cm/s. The unconfined strength of the 28-day cured specimens reached around 550kPa. Results of the consolidated-undrained triaxial test showed that the internal friction angle is between 33.5$^{\circ}$ and 41.8$^{\circ}$ . The lateral earth pressure against wall decreased up to 80% of initial pressure within a 12 hours and the total lateral earth pressure is less than that of typical granular soil. It was enough to construct the backfill for the standard retaining of 6m with just two steps, like fill the co-mixtures for half of retaining wall, and then fill the others after 1 day. The stability of retaining wall for overturning and sliding increased as the curing time elapsed. -
When a large number of hazardous road cut-slopes are spreaded in widely scattered areas, the effective investigation and evaluation method that is able to decide the risk of hazardous road cut-slopes, is required. Many different evaluation techniques were suggested by many different researchers based on their demands, but there are the limited researches on the experimental evaluation technique which can be utilized by personnel who does not have much experiences on the road cut-slopes. In this study, the appropriate and effective evaluation method of the dangerous slope is suggested and this method can be used by both inexperienced and experienced persons. Therefore, this is the one of the effective ways that can mitigate the possibility of landslides.
-
It is important to pay careful attention to construction backfill for the structural integrity of concrete box culvert. The stability of the surrounding soil is important to the structural performance of most culverts. Good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials to increase the structural integrity of culvert. However structural distress of the culvert could be occur due to the excessive earth pressure by dynamic compaction load. In this study, 16 box culverts were constructed with various compaction materials and construction methods. Three types of on-site soils such as subbase, subgrade and roadbed materials were used as backfill materials in the test program. Compaction methods were adapted based on the site conditions. In most cases, dynamic compaction rollers with 10 to 16 ton weights were used and vibration speed were applied from 2400 to 2500 rpm for the great compaction energy. Some backfill compactions with good quality soils were carried out to examine the effect of EPS(Expanded Polystyrene) panels with changes of compaction thickness. This paper presents the main results of the research conducted to access the engineering performance of the backfill materials. The characteristics of earth pressures are discussed. It is observed that subgrade and roadbed materials are needed more careful compaction than subbase materials. It is shown that EPS panels are effective to mitigate dynamic lateral earth pressure on the culverts. It is also obtained that the dynamic pressure depends on the soil properties. In addition, the coefficient of dynamic earth pressure (K
$\sub$ dyn/=ΔP$\sub$ H/ ΔP$\sub$ V/) during compaction is discussed. -
While the Grouting has been used to reinforce the foundation of structures in wide range of application, there need complementary measures against problems such as pollution, durability, influence on the adjacent structures. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting, Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the S.P.T and core strength.
-
Remediation grouting has been widely used for the rehabilitation of various civil works like hydraulic and traffic structures. Recently there were some cases of remediation grouting for repairing old dams in korea. So this study will describe the case of remediation grouting of the concrete dam base located east-northern part of Seoul. We use Lugeon Test and Borehole Image Processing System(BIPS) for estimating the effectiveness of remediation grouting of this project. As the results of this study, we could find the lots of joints between the old concrete body and the weathered rock base. So the about 30% quantity of total cement grouts was injected at the boundary surface between concrete and rock base. And Lugeon Test and BIPS could be compared relatively because BIPS results could be presented quantitatively as well as qualitative analysis. Finally, we could find microfine cement was very effectively injected to the fine fissured concrete body compared with ordinary portland cement, but there was little injectability differences beteween microfine cement and ordinary portland cement at the large cracks or cavities were developed rock base.
-
Stereographic method is a general and basic method to analyse sliding failure potential of rock slope. Region of failure analysis using stereographic method extend to curved slope from straight slope in this paper, Curved slope is defined as the multi-face slope with free surface more than two face and has different characteristics from straight single face slope. Individual daylight envelopes of free surfaces are combined into total daylight envelope of multi-face slope. So, sliding envelope of multi-face slope is the daylight envelope except friction cone. Specially, If only single joint set is developed in the slope, single plane sliding(or plane failure) is impossible in the single-face straight slope, but possible in the multi-face slope. In the multi-face slope with only one joint set, single plane sliding occurs when orientation of sliding plane is between two side slope orientation in the sliding envelope.
-
The application of Terzaghi's theory of consolidation for analysing the settlement of multi-layered soils is not strictly valid because the theory involves an assumption that the soil is homogeneous. The settlement of stratified soils with confined aquifer can be analysed using numerical techniques whereby the governing differential equation is replaced by 2-dimensional finite difference approximations. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D.M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M) which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.
-
This study was to present the method for estimating the horizontal coefficient of consolidation by using velocity method which was based on the Barren's equation. Horizontal drainage consolidation tests, including a radial drainage consolidation test, a cylindrical consolidation test, and a large soil box test, were performed to examine its validity. Using the velocity method, horizontal coefficient of consolidation was calculated and compared with lost method, √t method, Magnan & Deroy's method, Bergado's method.
-
The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.
-
When microorganisms such as bacteria and fungi are injected into porous medium such as soils along with appropriate substrate and nutrients, biomass retained in the soil pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrates and nutrients. Biomass-soil mixture was evaluated its applicability to the field condition as an alternative liner material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles.
-
The friction between soils and the geosynthetics varies depending upon the types and characteristics of the involved materials. Many engineers have studied the frictional characteristics between the two materials in may way but the results obtained so far is not satisfactory. In this study the frictional characteristics between the soil and the geogrid were examined through laboratory direct shear test and pull-out test. Tests were conducted on two different types of geogrid: Polyester grids(PET) which are currently used and newly developed fiber-glass grids(FG). Result showed that FG grid yielded smaller displacements and uniform displacement distribution mainly due to much higher stiffness. Therefore, it is expected that more efficientbfl support and displacement control can be achieved by the FG grid.
-
Geotube is a tube made of permeable but soil-tight geotextile, hydraulically filled with soil include dredged sand and mud, which has been successfully applied in hydraulic and coastal engineering projects. This method is getting popular and used a lot in the advanced countries of the world because of economical, useful, and enable to store and isolate contaminated materials as obtained by harbor dredging. Laboratory and pilot scale in-situ tests were performed to determine the design methodology and construction procedures. From the results of laboratory and in-situ model tests, the retention ratio of solid particle is minimum 86% and minimum permeability and tensile strength of geotextile is
${\alpha}$ ${\times}$ 10$\^$ -2/ and 20 t/m, respectively. Also, based on the environmental model test results, it can be concluded that this method does meet the Korean EPA standards. -
The discharge capacity of vertical drains installed in the field is reduced with time elapsed after installation due to deformation of drains and clogging effect. Discharge capacity of two types of vertical drains was analysed about three years after installation in the subsoil. Discharge capacity of two types of vertical drains were measured by small, middle, and large scale test apparatus. The results indicate that the discharge capacity of vertical drains after three years operation dramatically decreased compare to the initial discharge capacity.
-
In the present study, the analytical approaches of vacuum consolidation with horizontal drains were proposed, For dissipating rapidly pore-water in hydraulic fills, vacuum consolidation method applied vacuum pressure in horizontal drains is developed. In the analytical approaches, the governing equation is based on two-dimensional finite strain consolidation theory and the boundary conditions of horizontal drains are considered in applying negative pore-water pressure occurred by vacuum pressure, Also, parametric studies to vacuum pressure and installation pattern of horizontal drains are carried out.
-
Solid waste incinerator is expected to become widely used in Korea. The incineration of solid waste produces large quantities of bottom and fly ash, which has been disposed of primary by landfilling. However, as landfills become undesirable other disposal method are being sought. In this study, an experimental research is conducted to determine the geotechnical properties of municipal solid waste incinerator fly ash(MSWIF) in order to evaluate the feasibility of using the material for geotechnical applications. Basic pysicochemical characteristics, moisture-density relationship, strength, permeability, and leaching characteristics are examined. The results of MSWIF are compared to other MSWIF and coal fly ash which are used as construction material. In addition, the effectiveness of cement stabilization is investigated using various mix ratios. The result of stabilized mixes are compared to the unstabilized material. Cement stabilization is found to be very effective in reducing permeability, increasing strength, and immobilizing heavy metals. This results indicate that MSWIF with cement stabilization may be used effectively for geotechnical application.
-
In recent years there has been a steady increase in geoenvironmental engineering research where geotechnical engineering has been combined with environmental concerns in the field of construction and industrial waste reusing in civil works. Many of these projects involve some investigation on the characteristics of geotechnical and environmental properties. In this study, investigation and test on the characteristics of demolished waste concrete was carried out to detect the physical, mechanical, and environmental properties for reusing as embankment and backfill materials in civil works.
-
It has become interested in the concept of permeable barriers for the containment and/or destruction of contaminated groundwater. The purpose of these trench-like barriers is to provide in situ capture and possibly destruction of the contaminant while preserving groundwater flow to uncontaminated zones. For instance, a trichloreethylene(TCE) plume may be contained by a permeable in which reactive iron reduces TCE to ethylene and ethane, compounds which can be easily biodegraded. The objective of this research is to examine the feasibility of using zero-valent iron as a clean-up media in permeable reactive barrier system. A series of laboratory column tests are performed. The concentration of influent and effluent water and the rate of clean up are analysed from these test results. The experimental result shows that the majority of the contamination in groundwater is removed in the reactor. And it shows the corresponding increase in the concentration of chloride ions through the reactor. Results from this study indicate that permeable reactive barrier containing admixtures of zero-valent iron and other materials can effectively clean up groundwater contaminated with organic compounds.
-
It was investigated whether the waste polyethylene chips can be recycled as construction materials in geotechnical engineering field. The standard Proctor test, the hydraulic conductivity test, the large box direct shear test, the thermal conductivity test, the frost heaving test and the time domain reflectometry test were performed on weathered granite soil mixed with variable amount of the waste polyethylene chips. The experimental results showed that the hydraulic conductivity and the shear strength of weathered granite soil increase with increasing the amount of the waste polyethylene chips. On the other hand, the thermal conductivity, the amount of frost heaving and the unfrozen water contents of weathered granite soil decrease with increasing the amount of the waste polyethylene chips.
-
본 연구에서는 비등방성 응력조건 하에서 콘 관입속도가 콘 관입시험 결과에 미치는 영향을 연구하기 위하여 유한요소해석 및 Calibration Chamber를 이용한 Miniature Piezocone의 관입시험이 수행되었으며 그 결과를 비교 분석하였다. 비등방성을 고려하기 위하여 Anisotropic Soil Model이 유한요소해석에 이용되었으며 LSU/CALCHAS(Louisiana State University Calibration Chamber System)가 Miniature Piezocone의 관입시험에 이용되었다. 콘 관입속도의 영향이외에도 OCR 및 필터위치의 영향을 고찰하였다.
-
The purpose of this study is to examine mineralogical properties of the soft clay that is distributed widely in Samsan area, Ulsan. XRD analysis were examined to find the quantities of the clay minerals. And XRF, SEM and EDX analysis were also examined to investigate the chemical compositions and the structures of the clay. The properties of the samples from 2 sites in Samsan area were that the minerals of the clay were illite, kaolinite, chlorite, smectite and etc.. The plenty of illite has 38 to 53% of content in whole study area. And kaolinite had 18 to 30%, chlorite had 15 to 25%, and smectite had 4 to 12% of content, respectively. The results of SEM observation showed that appearances of Ulsan clay were sheet, plannar or needle form. Ulsan clay included the salt crystal of cubic and the foraminifera, which were related with the content of organ.
-
The flat Dilatometer test(flat DMT) has been known as an in-situ testing method which is simple and robust to use, and reliable for site stratification and evaluation of soil properties. It was designed and proposed by Marchetti in 1975 to characterize the properties of soils. There are many researches that have been done to evaluate the horizontal coefficient of consolidation from the dissipation test results of flat DMT on normally consolidated and slightly overconsolidated clays. The representative estimation methods of estimating the horizontal consolidation coefficient are DMT-C method which uses a C-reading dissipation curve and DMT-A method which uses a A-reading dissipation curve. This paper represents a comparison analysis of those two methods in obtaining the horizontal coefficients of consolidation. The reference values are also obtained by CPTU and other laboratory tests. The applicability of using flat DMT to characterize the consolidation behavior is also reviewed for two sites. According to the results, DMT-A method is not suitable for silty clays possibly because of the compressibility characteristics. As for the normally consolidated and slightly overconsolidated clays, the results obtained from the two methods are comparable with each other as well as with the laboratory test results.
-
The installation of vertical drains by using a mandrel causes significant disturbance of the subsoil. Thus a smear zone may be developed with reduced permeability and increased compressibility. In this paper the extent of smear zone developing ground disturbance with the installation of mandrels are analysed by field smear zone test. The extent and the consolidation characteristics of smear zones around the mandrels is compared with the shape, the size of mandrel and penetration speed and is evaluated from the field smear test results. (circular, sqare, rectangle and oval type)
-
In the present study, the variation of settlement, pore water pressure and undrained shear strength through model tests were measured. Also, the variation of water content, unit weight and shear strength by the vane shear tests were observed. In this study, appropriate deposit time of construction equipments used in treatment of hydraulic fills is determined from the prediction curve of increased shear strength in dredged fills.
-
본 연구는 피에조콘(Piezocone) 관입 시험에 의한 과잉간극수압의 소산(Dissipation)특성을 파악하기 위하여, 실측된 소산실험 결과치와 Gupta & Davidson에 의해 개발된 연속 공동확장이론(Successive Cavity Expansion Theory) 모델을 비교하였고, 그 경험적 이론의 적합성을 규명하였다. 연속 공동확장 이론이란, 콘 관입이 유발하는 관입 주변지반의 변환 메커니즘을 연속적인 공동확장의 전개과정로 파악할 때, 관입주변의 연속적 공동확장 영역에서 발생된 과잉간극수압들은 연속적으로 소산되어지고, 결국에는 관입멈춤직후 얻게 되는 소산시험의 결과도 이러한 과잉간극수압의 연속적 소산 메커니즘으로부터 그 영향을 받는다는 개념이다. 본 연구의 실험방법은 Piezocone 관입을 위한 연약모형지반 조성을 위하여 초대형 Slurry Consolidometer에 Slurry를 45일간 압밀시킨후 Calibration Chamber(Louisiana State University Calibration Chamber System)에 옮긴 후 2차 압밀시키는 Two-Stage Consolidation Method를 사용하였다. 또한 모형지반내에 8개의 Piezometers를 설치하여 Piezometers를 설치하여 Piezocone 관입시 유발되는 지반 내에서의 과잉간극수압의 변환을 측정하였다. 실험결과와 이론 예측치를 비교함으로써 연속 공동확장이론 모델은 u
$_2$ 형식의 피에조콘 관입 소산시험 결과들과 잘 들어맞는 모습을 보여줬으나, 관입으로 인한 주변 지반의 과잉간극수압의 소산변화는 정성적으로만 모사 되는 모습을 보여줬다. -
Settlement with crack on the hardened liners may occur in the weak clay due to waste load since the stiffness of the hardened liner is greater than that of the clay layers. Way of reducing deformation crack in the hardened liner is investigated using two computer programs, CONSOL and FLAC. The computer program CONSOL estimates the magnitude of settlement with time in clay layers and FLAC analyses the stress and deformation relationship between the foundation of landfill and waste load. The results show that a representative block of the analyzed area reaches the consolidation settlement of 1.32m, 8.8 years after the disposal of waste started with the degree of consolidation U=90%. The stress within the hardened liner exceeds the allowable vertical stress of 5kg/
$\textrm{cm}^2$ and horizontal stress of 1.67kg/$\textrm{cm}^2$ at the concave part of the liner where the main and branch drainage pipes of leachate are located. It was recognized that the thickness of the interested area should be enlarged or the strength of the same area should be improved to tolerate the planned waste load. -
This paper is relate to the result of pilot test in Asan. In order to evaluate the characteristics of behavior and deformation in Asan and to analyse the effect of soft ground treatment, preloading, two types of paper drain and pack drain were constructed in the ground. Settlement gauges, pressure meters, pressure cells and ground water gauges were monitored and also borings and piezoncone tests were performed. As a result of analyse, every vertical drained area was consolidated over 90% degree of consolidation but preloaded area was not reached to 90%.
-
In this study, it was to investigate the possibility to use the converts slag, by product in producing steel as a substitute material with sand that is used fur a civil construction materials, in developing techniques to use converts slag to improve soft clay ground. To do this, it was investigated the physical and mechanical properties of the converts slag as a civil construction material. For this, cylindrical cell consolidation with a single vertical drains and large scale soil box test were performed. Through large scale soil box test, the applicability of the converts slag to the present vertical drain techniques which is dependent on sand and plastic drains was studied. As a result of that, it was found that the shape of inserted drains was maintained after completing a consolidation process of a soft clay with slag drains. In addition, we could find that the slag drains showed the similar results with sand drains in soft clay by analyzing the effect of acceleration of consolidation.
-
Pioneering work by Terzaghi imparted scientific and mathematical bases to many aspects of this subject and many people use this theory to measure the consolidation settlement until now. In this paper, Finite Difference Methods for consolidation are considered. First, it is shown the stability criterion of Explicit scheme and the Crank-Nicolson scheme, although unconditionally stable in the mathematical sense, produces physically unrealistic solutions when the time step is large. it is also shown that The Fully Implicit scheme shows more satisfactory behavior, but is less accurate for small time steps. and then we need to decide what scheme is more proper to consolidation. The purpose of this paper is to suggest the pertinent scheme to consolidation.
-
It is important to estimate the mechanical properties of clay since it is directly related to the design and the construction of geotechnical structures. Site exploration, which is composed of boring, sampling, in-situ, or laboratory tests, is preformed to estimate the mechanical properties. However, mechanical properties of clay measured from laboratory test may be different from in-situ properties due to disturbances occurred during sampling, transportation, storage, and trimming. In this study, the degree of disturbance according to sampling method was estimated with the test results of CK/sub o/U triaxial compression test on Yangsan clay. The soil samples were obtained by three types of sampling method, j.e., 76mm-tube sampler, 76mm-piston sampler, and block sampler. In order to evaluate the quality of samples, volumetric strain, undrained shear strength, secant Young's modulus, and pore pressure coefficient at peak measured from each sample were compared with one another. From the test results, it was observed that mechanical properties of the block and piston samples were more reliable than those of tube samples. But it was observed that the water content of piston was similar to that of tube samples at given depths while the water content of block samples was 14.3∼15.8% smaller than that of piston and tube samples. In addition to the evaluation of the quality of samples, relationship between c/sub u// σ/sub vc/'and OCR was established from the results of the CK/sub o/U triaxial compression tests, which were carried out using SHANSEP method. And also undrained shear strength was analyzed using the in-situ test data such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that evaluated from CK/sub o/U triaxial compression test.
-
During consolidation, the permeability of clay decreases with void ratio because of the reduction in total void space. After Kozeny(1927) and Carman(1956), many researchers have proposed the relations between void ratio and permeability. Most of the relations are expressed in the following forms as : (1) log e - log k(1+e), (2) e - log k, or (3) log e - log k. These relations have been found valid for a large number of normally consolidated clays. From laboratory test(CRS and I
$L_{CON}$ ) results, the relation between void ratio and permeability of Kimhae clay was well defined in all of the three forms. Permeability change index,$C_{k}$ , of Kimhae clay was in the range of 0.64~1,03 and average value of$C_{k}$ was 0.821. And the test results satisfied the experimental correlation between$C_{k}$ and e,$C_{k}$ =0.5e. In log e - log k(1+e) relation, constant C was in the range of 1.91~4.74$\times$ 10$^{-8}$ cm/sec and n was in the range of 3.74~4.60.c and n was in the range of 3.74~4.60.74~4.60.0. -
This study concerns with the variation of engineering characteristics of soft ground under embankment treated vertical drains. The derived engineering characteristics can be used in the prediction of increased strength of soft ground treated with vertical drains. The variations of physical properties such as liquid limit, natural water content, void ratio, and dry unit weight, and mechanical properties such as strength, preconsolidation ratio, compressibility are analysed and suggested. The co-relation of physical properties and mechanical properties with installation of vertical drains in soft ground are derived in this study.
-
In this study, the Atterberg limit and grain-size analysis were carried for the purpose of investigating the influence on drying and organic matter of Ulsan marine deposited clay. The results revealed that Atterberg limit was decreased and grain-size distribution was variable on drying. The presence of organic matter also influenced on the physical properties of the soils. The physical properties of marine deposited clay were variable on drying, so that we recommended grain-size analysis and Atterberg limit test were performed under the wet condition of the soils after sampling.
-
The estimation of consolidation rate is one of the important factors in the construction on soft clayey deposits. A number of researches are carried out to predict the consolidation behavior in field, however, most of the results show the discrepancies between the prediction and observation. This paper analyzes consolidation behavior of normally consolidated clay in K/sub o/ condition with 2-dimensional drainage by use of the numerical methods. Elastic and elastic-plastic finite element analyses are compared in terms of the dissipation of excess pore pressure. These results are also compared with Terzaghi-Rendulic's equation that is implemented by finite difference method. The consolidation time calculated by using elastic model is found to be similar to the result of Terzaghi-Rendulic's equation. The consolidation predicted by MCC model takes more time than other cases. Initial increase of excess pore pressure in radial drainage can be shown, however, this phenomenon does not have a significant effect on tile final consolidation time.
-
Piezocone test as well as Dilatometer tests are used worldwide to evaluate the engineering properties of clay soils. The common strong point of the two tests is that they can estimate, by the identical test equipment, various properties of soils, which are the unit weight of soils of OCR, K
$\sub$ o/, undrained shear strength(s$\sub$ u/), coefficient of consolidation(c$\sub$ h/) and soil classification etc,. A series of the two types of field tests are performed in this study on marine clays with low plasticity at Inchon International Airport construction site to estimate various properties of the soils such as s$\sub$ u/, OCR, and c$\sub$ h/, which are then compared each other as well as with the results of reference tests. The comparisons show that the way of interpretation is the most critical factor in obtaining confidential results for a certain engineering property for both tests. -
Vertical drain used improvement soft clay is made of not only decreasing construction time but also increasing the ground strength during some decades. As, it is applied to improvement soft clay with vertical drain, it is designed by the result that is caused by oedemeter test ignored anisotropic of the ground related to consolidation conditions. When we are expected consolidation conditions, the most important factors is soil of compaction and water permeability. Above all, anisotropic of the ground permeability show the results which differ between vertical and radial drainage. Recently, We study for radial consolidation coefficient and permeability coefficient that utilized Rowe Cell Consolidation and permeability tester but, it dont use well because of not only a supply lack also difficulty of test. The paper experimented with searching anisotropic of the ground so there are Rowe Cell test, standard consolidation tester and modified standard consolidation test that have pohang's soft clay ground. Therefore, we find anisotropic of the ground and a tester of easy use more than before. We made a comparison test result between the devised tester and Rowe Cell tester, Also, we learned average degree of consolidation for partial penetrating vertical drains. We were found relations as effective stress-void and effective stress-permeability coefficient through those tests.