Generally, high-temperature, high-pressure, high-priced sintering equipment is used for diamond sintering, and conductivity is a problem for improving the surface modification of the sintered body. In this study, to improve the efficiency of diamond sintering, we identified a new process and material that can be sintered at low temperature, and attempted to develop a composite thin film that can be discharged by doping boron gas to improve the surface modification of the sintered body. Sintered bodies were sintered by mixing Si and two diamonds in different particle sizes based on CIP molding and HIP molding. In CVD deposition, CVD was performed using WC-Co cemented carbide using CH4 and H2 gas, and the specimen was made conductive using boron gas. According to the experimental results of the sintered body, as the Si content is increased, the Vickers hardness decreases drastically, and the values of tensile strength, Young's modulus and fracture toughness greatly increase. Conductive CVD deposited diamond was boron deposited and discharged. As the amount of boron added increased, the strength of diamond peaks decreased and crystallinity improved. In addition, considering the release processability, tool life and adhesion of the deposition surface according to the amount of boron added, the appropriate amount of boron can be confirmed. Therefore, by solving the method of low temperature sintering and conductivity problem, the possibility of solving the existing sintering and deposition problem is presented.