The effect of varying amounts of graphite and $TiB_2$ on the electrical conductivity of composite bipolar plates was systematically studied. In this study, Titanium diboride ($TiB_2$) which has a high electrical conductivity, was selected as a filler and a additive material instead of conventional graphite. For proper distribution of the filler and matrix materials, ball milling using alumina balls was conducted for 1h, and then the hot press method was applied for the preparation of composite samples. The results showed a rapid increase in the electrical conductivity of composite bipolar plates at the critical filler content. However, $TiB_2$ and graphite composite bipolar plates showed similar increases in the electrical conductivity even though $TiB_2$ has a higher electrical conductivity than graphite. In addition, it was also found that a small addition of $TiB_2$ to graphite filler could be very effective for increasing the electrical conductivity and flexural strength of the composite bipolar plate.