The effects of the cooling and annealing conditions on the microstructures and corrosion properties were investigated for the Cu-contained Zr-Nb alloy (Zr-1.1Nb-0.07Cu). After annealing at $1050^{\circ}C$ for 15 min, the specimens were cooled by three methods of water quenching, air cooling, and furnace cooling. Widmanstatten structures were developed in both air- and furnace-cooled specimens, and the Widmanstatten plate width of the furnace-cooled specimens was wider than that of the air-cooled ones. The weight gain in the furnace-cooling case was higher than that in the air-cooling case. This could be the reason why the diffusion time was more enough during the furnace cooling than the air cooling. The oxide of the furnace-cooled specimen was nonunformly formed just beneath the Widmanstatten plate boundaries, where ${\beta}_{Zr}$ phases were exised concentrately. Compared with the $640^{\circ}C$ annealing after the water quenching, the $570^{\circ}C$ annealing could make the ${\beta}_{Nb}$ phases and a concomitant reduction of the Nb in the matrix, and then it could improve the corrosion resistance with the increase of the annealing time. It would be concluded that the corrosion resistance of the Zr-1.1Nb-0.07Cu was good when the Nb concentration in the matrix was reached at an equilibrium level and then the ${\beta}_{Nb}$ phase was formed.