In order to the influence of grain size distribution on compressive strength and coefficient of permeability, unconfined compression test and permeability test were performed for seventy samples that have various grain-size distributions. Its results are as follows: 1. Maximum unconfined compressive strength appears at the dry side of optimum moisture content. 2. Unconfined compressive strength is proportional to the increase of percent passing of No. 200 sieve. 3. Precent of deformation in failure increases in proportion to the increase of percent passing of No. 200 sieve, and modulus of No. 200 sieve, and modulus of deformation also increases in proportion to percent passing of No. 200 sieve. 4. Unconfined compressive strength increases in proportion to uniformity coefficient, liquid limit and plastic index, but it decreases gradually according to the increase of coefficient of grading and classification area. 5. Maximum dry density decreases according to the increase of void ratio. 6. Coefficient of permeability decreases according to the increase of percent passing of No. 200 sieve, and when percent of No. 200 sieve, and when percent passing of No. 200 enlarged more than 40%, it becomes less than $10^{-6}cm/sec$ which is the limit of coefficient of permeability of core material for earth dam proposed by Lee. 7. Coefficient of permeability increases according to the increase of coefficient of grading, classification area and index of Talbot formula r, but it was rather decrease by the increase of uniformity coefficient. 8. Coefficient of permeability seems to depend on the size and the shape of the flow path which is a series of void to be concerned by the size and the proprton of soil grain, even though void ratios are same.