Proceedings of the Korean Geotechical Society Conference (한국지반공학회:학술대회논문집)
- 기타
2008.10a
-
The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.
-
Ground investigation data to be used as a basis for geotechnical analysis and foundation design are usually troubled with large uncertainty, due to natural variability and limited number of data. Statistical methods can be a rational tool for handling such uncertain ground data, in particular with a view to the selection of characteristic values for estimating ground design parameters used in design. The characteristic values of soil properties for use in geotechnical design have oftenly based on not only a subjective judgment but also engineer's past acumulated experience. This paper discussed some statistical methods which can handle such intrinsic ground uncertainty data with a case design in a rational manner.
-
콘관입시험(CPT)은 의사정적상태로 수행되는 현장시험방법으로서, 각종 기초구조물의 설계와 더불어 지반조사를 위한 대표적 방법으로 널리 적용되고 있다. 본 논문에서는 콘관입시험결과를 이용하여 사질토 지반에 있어서 지반강도의 상세평가법을 제안하고자 한다. 사질토의 강도는 상대밀도와 응력상태에 따라 변하는 상태의존적 성질을 나타내고 있으나, 이러한 역학적 성질은 실험실 내에서만 측정이 가능한 상태이며, 현장강도의 경험식이나, 대표강도의 평가만이 제안되어 있는 실정이다. 따라서 본 연구에서는 대표적 현장시험방법인 CPT를 이용하여 다이러턴시 특성 평가가 가능하며, 다양한 지반특성치가 반영될 수 있는 현장강도의 상세평가법을 제안하고자 한다. 이를 위해 실내삼축압축시험을 통해 얻어진 강도특성과 역학특성치들을 분석하였으며, 이를 토대로 수정 다일러턴시 평가법을 제안하였다. 제안된 방법의 검증을 위해 가압토조를 이용한 콘관입시험을 수행하였으며, 측정값과의 비교분석을 수행하였다.
-
The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a
$0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils. -
Geotechnical limit state design methods; LRFD of North America is an approach that estimates resistance using design model and then multiplies resistance factor by calculated resistance to reflect the uncertainty of geomaterials and design models; whereas, Eurocode of the Europe employs the partial resistance factor applied directly to each variable in the resistance equation that individual soil properties such as cohesion and angle of internal friction are applied. This discussion paper is a study on characteristic value which has globally been argued through processing of development of Eurocode 7 for geotechnical design even to the present. Estimating the characteristic value of soil properties affects not only determination of design value applied directly to design of geotechnical structures, but also economic feasibility and stability of the structures.
-
Since 1984, block-type reinforced earth wall with geogrid reinforcement has been widely used for retaining wall applications till now in Korea. The use of geogrid as a reinforcement in the reinforced earth wall is steadily increased in an amount over
$6,500,000m^2$ in a year. However, still need exists that some problems in design and construction practices should be made to review. Therefore, this paper reviewed current state and development items of geosynthetics-reinforced earth wall technology on design and construction point of view. -
Reinforced earth wall system has been popularized since its introduction to Korean civil engineering society in early 1980's. Nowadays, the increased use of reinforced earth wall for the purpose of obtaining more land brings several additional demands such as environmental-friendly, better stable and constructible, and economical system. This paper introduces some recently developed reinforced earth wall systems with consideration of the current demands.
-
The method of reinforced earth walls has grown remarkably and the frequency of utilization has been increased on a national scale thereafter introduced in the middle 1980s in Korea. Furthermore the construction case of the extensive Geosynthetic-Reinforced Segmental Retaining Walls had been increased. Currently, the design criterion of FHWA and NCMA mainly used in Korea suggest determining the horizontal distance of the upper/lower retaining wall based on the study results of the internal stability and the external stability of Segmental Retaining Walls but in many cases are not suitable for the actual situation in Korea. Therefore, in this study reviewed the design criterion of Geosynthetic-Reinforced Segmental Retaining Walls, performed the internal and external stability in Paju, Gyeonggi-do based on the design criterion of FHWA and NCMA, suggested the modified design criterion of FHWA with analyzing the results, and performed the stability analysis for the internal and external stability and the compound failure. Moreover for the confirmation of the modified FHWA design standard, the suggestion and the analysis of the numerical analysis approaching method using shear strength reduction technique were performed and the design cases utilized the modified FHWA design standard based on the study analysis were introduced.
-
This paper highlights the importance of carrying out global slope stability analysis as part of design calculations for geosynethetic walls in tiered configuration. Four design case histories were selected to examine the appropriateness of their design by performing additional slope stability analyses using the shear strength reduction method with in the frame work of finite element analysis. The results indicated that all of the walls examined, which were designed to meet the current design guide lines, did not satisfy the global slope stability requirement, and that longer reinforcements are required in the upper tiers to achieve the minimum factor of safety. Practical implications of the findings are discussed.
-
The use of geosynthetics for the reinforced earth wall system has been increasing rapidly for a number of years. The connection strength between wall facing and geosynthetics should be evaluated in the design of geosynthetics. However, the connection strength is not often evaluate, exactly, and it causes problems such as deformation of the wall facing, local failure of the reinforced earth wall system, conservative design and so on. Therefore, the connection strength in the design of geosynthetics should be applied evaluation result by reasonable method. This study is evaluated connection strength using the typical design method, NCMA(1997) and FHWA(1996), in the field case. Then the results compared with the evaluation results of connection strength, which is suggested by Soong & Koener(1997). The analysis results confirmed that the connection strength for the design of geosynthetics should be evaluate using reasonable method with considering various factor, such as safety factor, installation and importance of construction.
-
Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor(
$RF_{CR}$ ) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design. -
-
최근 "저수지 댐의 안전관리 및 재해예방에 관한 법률(이하 '저수지 댐 법')"이 제정(2008년 6월 5일 공포)됨에 따라 노후도가 심화되고, 기상이변과 지진 등에 의한 자연재해 위험이 증가하고 있는 댐 저수지에 대하여 정부차원의 안전관리 및 재해예방 기능이 강화되고 있다. 뿐만 아니라 새로 제정된 법률을 통해 다원화되어 있는 저수지 댐의 관리주체와 그에 따른 안전관리 업무의 차이에 따른 혼란을 극복 개선하여 통합적으로 관리할 수 있는 총괄 조정 기능을 갖추게 되었다. 본 논문에서는 이 법의 제정 배경과 향후 추진계획을 간략히 소개하였다.
-
최근 기상이변과 빈번한 지진발생 및 기타 내외적 요인에 의한 노화/열화 등으로 인하여 댐 안전관리 문제가 국가의 재난관리 차원에서 주요 이슈가 되고 있다. 이에 본 논문에서는 기존 댐에 대한 안전관리를 효율적으로 수행할 수 있도록 하기 위해 개발된 댐 안전관리 시스템(Dam Safety Management System)의 세부구성 및 기능 등에 대하여 소개하고, 향후 선진화된 댐 안전관리를 위해 보완되어야 할 부분에 대한 제언을 하였다.
-
Environmental standards for beneficial uses of dredged materials are proposed. Even though chemical analysis of ocean sediments are carried out frequently, their analyses results were not interrelated with the effects of biological lives due to a shortage of biological data. These facts have resulted in difficulty to develope Korean's standards of recycling dredged materials. This paper first searched existing current foreign standards, analyzed local contaminated ocean sediment data, identified their main chemical components of contaminants, and then compared with clean-up standards of sediments consisting of lower and higher levels. From these analysis, new environmental standards considering Korean domestic circumstances are proposed. It is judged that new standards are appropriate to both Korean national sedimental environments and economically recycling aspects because environmental standard levels proposed are higher than background levels of sediments in Korean and foreign standards.
-
In the past, MSW (Municipal Solid Waste) disposal was typically done by recycling, incineration, or landfilling. In South Korea prior to the late 1950's, land burial was usually accomplished by disposal in an open dump. Currently, with increasing concerns and environmental recognition, MSW disposal and landfilling is more restricted. MSW landfill facilities have been developed with certain design and construction specifications. However, these methods have a space for improvement. MSW landfill facilities follow a step wise approach of design, construction, operation and closure management after use in agreement with established environmental and sanitary standards. This study intends to give a technical guidance for installation and consideration of newly established MSW landfill facilities, and also provide an establishment and regular inspection of MSW landfill facilities.
-
시멘트를 이용한 지반개량 및 시멘트계 건설폐기물을 (예, 폐콘크리트, 및 시멘트 개량토 등) 성토재로 재활용하는 경우 지반 환경에 미칠 수 있는 영향으로는 (1) 시멘트에 함유된 6가 크롬(
$Cr^{6+}$ ) 및 (2) 강알칼리 물질의 용출이 있을 수 있다. 특히$Cr^{6+}$ 의 경우 인체에 치명적인 발암성물질로 알려져 있어 이에 따른 주의가 필요하다. 최근 일본에서는 시멘트의$Cr^{6+}$ 에 의한 지반오염이 우려됨에 따라 2000년 시멘트계 고화재를 지반에 사용하는 경우와 개량된 토양을 재이용하는 경우에는 토양환경기준을 만족하도록 규제하고 있다.$Cr^{6+}$ 외의 시멘트계 물질에 의한 환경오염으로는 강알칼리 물질의 유출이 있을 수 있다. 시멘트 개량토나 폐콘크리트 등의 건설폐기물을 성토재로 재활용하는 경우, 강우의 유입에 따라 구성물질인 수산화칼슘이 용해되어 높은 pH의 유출수가 발생한다. 강알칼리 유출수가 주변 하천 등으로 유입되는 경우 심각한 환경문제를 유발할 수 있으므로 이에 대한 기술적 검토가 필요하다. 본 발표에서는 시멘트계 물질에 의한 일본의 지반환경오염 사례 및 대책을 소개하였다. -
The status of contaminated soils vary widely ; therefore, the techniques and equipment applicable to the soil concerned should be selected and used after careful consideration. Hyundai Soil Washing is physical-chemical separation based on mining and mineral processing principles for removing a broad range of organic and inorganic contaminants from soil. Mobile plant(capacity 15 tons./hr) was installed for this project. The goals of this project were 1) to verify the applicability of the washing process, which showed reliable results in the pilot plant with various kind of contaminated soils and 2) to promote recycling of the washed soil as a backfill on site. The results revealed that
$F^-$ and$Pb^{2+}$ in the soil were effectively washed out to a certain level which washed soil was acceptable for recyeling. -
국내 절토비탈면은 이상 기후 및 건설공사의 증대로 인해 증가하고 있는 추세이며 장마철 및 태풍으로 인해 비탈면의 붕괴로 많은 인명 및 재산피해가 발생되고 있는 실정이다. 국내에서 사용되고 있는 기존의 비탈면의 설계기준은 암반의 불연속면에 대한 조사를 실시하고는 있지만 주로 암반의 굴착난이도를 토층, 리핑암, 발파암으로 구분하여 각각의 비탈면 절취경사를 결정하여 사용하는 방법을 사용하였으며 이러한 기준은 단순히 암석의 강도를 기준으로 설정되어 있으므로 암석의 공학적 특성 즉, 암반내 불연속면 방향성, 연속성, 충진물질, 마찰각, 풍화속도 등의 영향으로 공용후 비탈면 구배의 재조정 및 보강이 빈번하다. 국내외 절토비탈면의 설계기준은 각 기관별로 산재되어 있었으며 비탈면에 대한 설계 및 시공 등에 관한 기준은 도로와 철도 설계기준에 일부 반영되어 있을 뿐 항만, 댐, 택지조성 등 기타 시설 설계기준에는 비탈면에 대한 기준이 마련되어 있지 않아 표준적인 비탈면 설계기준 및 유지관리지침이 등이 필요하였다. 이러한 문제점을 보완하기 위해 2004년부터 2006까지 한국시설안전공단, 한국도로공사, 대한주택공사가 협동으로 연구한 건설공사 비탈면 설계 시공 및 유지관리에 관한 연구의 결과로 2006년도에 "건설공사 비탈면 설계기준"이 수립되었다. 이 설계기준은 건설공사에서의 기존 상이한 기준들을 정리하고 동일화하는 작업을 수행하였으며 지반의 조사에서부터 대책공까지를 막나하여 정리하였다. 그러나 최근에 급격한 기후변화로 인한 비탈면붕괴 빈번함에 따라 과거 적용되어 왔던 이들 기준을 적용하는 경우, 특히 상부 토층 및 풍화암 구간에서 많은 설계안전율을 만족하지 못해 많은 보강을 수반해야 하는 문제가 발생되고 있어 그 원인에 대한 분석을 수행하고자 하였다. 2006년도 정리된 기준은 과거에 적용하여 온 유기시의 안전율 조건을 Fs > 1.1~1.2을 적용하였던 것을 Fs > 1.2로 통일하였으며 지하수위 조건은 지표면에 위치하도록 하였다. 지하수위 조건은 풍화암 및 토층의 경우, 과거 지표면에 -3m를 적용한 시기가 있었으나 지표면에 지하수위를 적용하는 것이 일반적인 해석방법이다. 이러한 결과의 원인을 검토해 보면 다음과 같다. 첫째, 풍화암 및 토층에 적용되어 온 지반강도 정수가 과거 적용한 값보다 최근에는 작아지는 경향을 보이고 있다. 둘째, 지하수위 적용문제로 현재 지표면에 지하수위를 두어 안전율을 감소시키는 문제로 이는 최근 들어 많은 연구기관에서 강우시 간극수압의 증가에 대한 연구가 활발하게 진행되고 있다. 그러나 침투수 해석은 현행 기준에도 강우의 침투를 고려한 해석을 실시하는 경우 FS > 1.3 적용하는 것으로 되어 있으나 대부분의 해석에서는 적용이 되지 못하고 있는 실정이다. 셋째, 안전율이 과거에 주로 적용된 Fs > 1.1에서 Fs > 1.2로 상향 조정되어 우기시의 설계안전율 만족시키지 못하는 문제이다. 그러므로 이러한 문제점을 개선하기 위한 검토가 필요하며 장기적으로 이에 대한 합리적인 기준을 개정하는 작업이 추후에 수행되어야 할 것으로 판단된다.
-
매년 집중호우로 인하여 사면붕괴 및 산사태가 발생하고 있다. 사면 붕괴의 원인은 단순히 한가지의 요소에 의하여 붕괴되지 않고 다양한 요인이 중첩되어 발생된다. 이런 요인들을 사전에 파악하여 붕괴원인을 규명하고 적절한 사면 보강 방안 및 설계를 실시하여야 할 것으로 생각된다. 본 고는 사면붕괴후 설계 보강방안에 대한 자료를 수집하고 분석을 실시하였다. 사면붕괴의 요인으로 생각하는 대표적인 사례를 열거하였다. 사면붕괴로 인해 발생하는 피해를 저감하고 재차 사면 붕괴를 방지하기 위하여 도움이 되었으면 한다.
-
There have been repetitive landslides and debris flows on natural terrain induced by intensive rainfalls which have never been experienced during the last a few decades in Korea. Frequencies and magnitudes of landslides and debris flows are steeply increased after 2000 resulting in huge damages of human beings and facilities. According to a statistical data from NEMA, the human deaths induced by landslides and slope hazards occupies 22.3% of the total human deaths by all the natural hazards in Korea during the last 30 years. Among the human deaths by landslides and slope hazards, 85% of the damages were caused by landslides and debris flows on natural hazards. Therefore, this paper summarizes important events of landslides and debris flows, their characteristics, and suggests some methods of damage mitigation.
-
Deformation of caisson occurred during the backfilling behind the caisson and some caisson moved toward seaside. A series of site investigation were conducted to figure out various circumstances at site and also used to analyze the cause of deformation. The soil condition of backfilling is also investigated because dredged material was used as a backfill material. The friction angle of backfill is supposed to be lower than the estimated one which was used in design stage. To determine the cause of friction shortage, back analysis for sliding safety were carried out with considering the soil condition of backfilling. A remedial plan, re-rising and relocating a caisson with backfilling good earth after treatment of caisson rubble mound to achieve the safety for sliding was proposed as a best solution based on the back analysis results. Reform concrete structure including service gallery and crane rail was also considered with the remedial work to improve the cape line of caisson.
-
This paper discusses two user-friendly reliability techniques that could be implemented easily using the ubiquitous EXCEL. The techniques are First-Order Reliability Method with non-Gaussian random variables expressed using Hermite polynomials and collocation-based stochastic response surface method. It is believed that ease of implementation would popularize use of reliability-based design in practice.
-
An excavation with the depth of 32.7m will be constructed as a ventilation shaft in Shanghai metro Line 9. The excavation induced effect on a nearby undercrossing road in operation must be properly evaluated. A centrifuge model test was conducted to study the impact of deep excavation on this existing undercrossing. Detail simulation works are described in this paper. The excavation steps could be simulated in the no-stop state of centrifuge machine. And induced settlements of the undercrossing road in both parallel and vertical directions were analyzed. Protective partition cement soil piles were also simulated in the tests. Simulation test shows deep excavation has a great influence on undercrossing road and the partition pile can obviously deduce the influence.
-
The bentonite slurry has been used as the stabilize suspension for wet process bored pile construction in Thailand. The bentonite suspension has benefit on filtration in the sand layer, but it creates thick cake film along pile shaft and loose sedimentation at pile toe. The base grouting technique was widely used to rectify the soft base or loose sedimentation problem of bored pile. The base grouting technique was not increased only end bearing capacity, but was also more increase in skin friction capacity of the bored piles. The comprehensive researches on base grouting was carried out by installing PVC casing inside the shaft to allow the drilling through the pile base in order to collect the soil sample below the pile tip. The polymer based slurry recently was used to replace the bentonite slurry to overcome the thick cake film along pile shaft as well as loose sedimentation at pile toe. The extent research on polymer slurry by physical model was performed to verify the real behavior of polymer. The appropriate mixing ratio of polymer was proposed. The design skin friction coefficient,
$\beta$ and end bearing coefficient, Nq, for sand layer base on fully instrumented tested pile were proposed. The application on remedial of the lose capacity bored pile with large displacement in Bangladesh was proposed and discussed. -
A reliability based slope stability assessment method is proposed and examined considering the variation of matric suction which is measured by a real time slope monitoring system. Mean value first order reliability method and advanced first order reliability method are used to calculate reliability indices of a slope. The applicability of methods is compared by applying them to the range of matric suctions measured by the real-time monitoring system. Sensitivity analysis is also performed to examine the contribution of random variables to the reliability index of slope. Finally, the proposed method is applied to a model slope. The results show that the reliability index of slope can be used for efficient slope management by quantifying the risk of slope in real time.
-
In this study, the settlement prediction method based on field monitoring data under preloading improvement with ramp loading is developed. Settlement behavior can be predicted with field monitored settlement throughout the entire preloading process including ramp loading followed by constant loading. The developed method is verified by comparing its predicted results with results from physical model tests and field monitoring data.
-
In this study, the load distribution and deformation of rock-socketed drilled shafts subjected to axial load are investigated based on small scale model tests. In order to analyze the effects of major influencing factors of end bearing capacity, Hoek-cell triaxial tests were performed. From the test results, it was found that the initial slope of end bearing load transfer (q-w) curve was highly dependent on rock mass modulus and pile diameter, while the ultimate unit toe resistance (
$q_{max}$ ) was influenced by rock mass modulus and the spacing of discontinuities. End bearing load transfer function of drilled shafts socketed in rock was proposed based on the Hoek-cell triaxial test results and the field loading tests which were performed on granite and gneiss in South Korea. Through the comparison with pile load tests, it is found that the load-transfer curve by the present study is in good agreement with the general trend observed by field loading tests, and thus represents a significant improvement in the prediction of load transfer of drilled shaft. -
The purpose of this study was to comparatively analyze the measured values and modelling values when a sample mountain was cut and thereby, assess the fitness of the prediction model. For this purpose, the researcher analyzed the relationship between the groundwater levels measured at 7 monitoring holes set within the area of the underground flow prediction model and the levels of the groundwater monitoring holes before and after mountain cutting. As a result of this analysis, it was found that the MODFLOW program itself was limited and uncertain in terms of calibration of the modelling values. Since the model was based on the assumption that the same amount of rainfalls would permeate into the ground when the sample mountain area was cut up to 50m high, it was deemed inevitable that the result of modelling was different from the actual measurement.
-
It is necessary to develop a national design method for surface reinforcement of very soft ground because most current design works rely on crude empirical correlations. In this paper, the mechanical behavior of very soft ground that is surficially reinforced was investigated with the aid of a sents of numerical analysis. Several material properties of each dredged soft ground, reinforcement and backfill sand mat have been exercised the numerical analysis in order to compare the result of numerical analysis with those of the laboratory model test. Through the matching process between the numerical and experimental result, it is possible to find the appropriate material properties of the dredged soft ground, reinforcements and backfill sand mat. These verified material properties permit to show the effect of the stiffness of reinforcement and the thickness of sand mat on the overall deformation.
-
The purpose of this study is to compare the cementation effect on cone resistance and DMT indices and to evaluate the deformation characteristic of cemented sand using cone resistance and dilatometer modulus. Specimens of various relative densities with three different cementation levels are prepared in a large calibration chamber under different vertical stress levels. Test result shows that the cone resistance and dilatometer modulus underestimate the deformation modulus of cemented sand, since in situ penetration tests such as CPT and DMT damage the cementation bonds during penetration. By regression analysis, the constrained modulus of cemented sand is related with the cone resistance and the dilatometer modulus.
-
The objective of this research is an investigation of engineering properties of weathered granite soil mixed with Phosphogypsum and recycled EPS beads as an light-weighted soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test and direct shear test were performed for various mixing ratios. Based on the laboratory test results, it was found that the maximum dry unit weight of the light weight soil ranges
$1.46{\sim}1.61g/cm^3$ and the maximum dry unit weight decreases about 11~19.3% with the increase of amount of the recycled EPS beads and the optimum moisture content increase. Since the CBR values of the light weight soil ranges 10.4~18.4%, the light weight soil mixed with Phosphogypsum and recycled EPS beads can be used as a light weight backfill material on the soft soil. -
The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.
-
Reliability and sensitivity analysis of the design parameters for a section of caisson type quaywall which is the most applicable in Korea were performed. It was tried to estimate probabilities of failure for the system of the multiple failure modes and to analyze LCC in the quaywall structure. The reliability analysis was performed by FORM. Also, sensitivity indices were estimated using the reliability indices, which may be used inferring effects of each design parameter on the reliability indices. As a result, the coefficient of friction between caisson and rubble, the moment by self weight and the moment of resistance mostly affected on the reliability indices in the sliding, overturning and foundation failure, respectively. System reliability theorem was applied in order to estimate the probabilities of failure for the system of the multiple failure modes. As the results of estimation of the probabilities of failure for the system, all cases were more conservative than those for the elements, according to both failure mode and load combination applied to series system. It entirely exceeded the target reliability index, but it was consistent with the theorem. According to the optimum LCC with the width of the caisson, the probability of failure exceeded the target probability of failure at then time. Therefore, it was judged to be insufficient to the practical application.
-
The SIP method developed by low noise-vibration from Japan is appropriate to the construction at urban area. However, this method has been misused as a pre-driiled driven pile method in Korea. Hence, Korea Expressway Corporation proposed 'Design & Construction Guideline for the SIP Method' following the original concept of the SIP method at 2004 and 2006. Also construction guideline of another auger-drilled piles were introduced.
-
-
Active application of auger-drilled piling is expected in Korea considering its advantage in noise and vibration problems against driven piling and its cost-effectiveness in comparison to the cast in-situ piling. The current design practice being used in Korea is adopted from the Japanese one, however the equipment and construction procedure is modified for the geotechnical conditions and construction circumstances in Korea. Therefore there is an urgent need for the establishment of the rational design criteria for the auger-drilled piling in Korea. As the preliminary work for the establishment, this paper presents the current practice in Korean railway constructions. Design criteria of Korea Railway Network Authority are introduced and its characteristics and the problems are described. Application cases of auger-drilled pile to railway construction are introduced as well.
-
Well known and widely used in urban area and limited installation condition, a low noise and vibration piling method which has being called Bored Prefabricated Piling Method was reviewed in terms of design guide, and introduced a few case as well. Among the areas being applied of that method, a structural guide of architectural foundation was reviewed and compared to civil engineering foundation area to provide wider information for the foundation engineers. With introducing a few case application including pile load testing review especially dynamic testing in normal building foundation work, engineers may have a useful information on the design and construction of the piling method even different engineering area. It may also make enhancement a view of foundation engineering knowledge to various pile foundation area.
-
This paper describes the state-of-the-art and -practice of embedded precast pile methods in Korea. The current status of embedded precast piling was reviewed in terms of its design, construction and quality assurance available for last decade in Korea. Based on the results obtained, some suggestions and authors' experience were proposed to design and construct the embedded precast pile foundations.
-
If slope height was more than 20 meters, we conducted an analysis of stereographic projection and limit equilibrium at this slope. We proposed reduction of slope face angle and reinforcement of rock bolt depending on analysis. Blasting design : Standard pattern based on result of local test blasting was made for blasting design. Vibration criterion was set for less than 3.0mm/s because of outworn buildings and inhabitants opinions. Production blasting and Controlled blasting has been done as Construction standard pattern. After Vibration Monitoring has been done, so that we can control of complement. "Bidding Document" and AASHTO 2001 "A Policy on Geometric Design of Highways and Streets" were so for design criteria of earthwork but they were different actual design criteria and left something to be desired in Afghanistan. Therefore, although "Bidding Document" and "AASHTO 2001" were basic design criteria, domestic design criteria was reflected in this design criteria for complement by discussion with supervisor. Drainage design : For stability ratio, ditch of arch block and stonework was designed by rainfall data for the 13 years and discussion with supervisor. Pavement was designed as flexible pavement. Because these days in Afghanistan postwar repair works, especially urgent repairing of roads and newly making of roads, are very highly in progress, I think that Afghanistan is the region about which our construction technical experts should have great concerns.
-
A SWP method is a revolutionary dewatering method. The conventional dewatering method, deep-well method, had ever occurred a civil appeal caused by the well depletion in compliance with the reduction of the groundwater level over a wider area considerably by the deep-well pumping from homogeneous sand-layer ground for a dry-work, while pump groung excavation working in Sendai city, Japan 10 years ago. it'd developed with the problematic proposal to find the new method which can lower the groundwater level only within the sheet pile without any reduction of groundwater outside of the sheet pile and until currently steady improvement came. It's been confirmed with plenty of executional results that there was almost no decreasing of water-level from surroundings, over so many construction-sites including vertical shafts which completely does not enter into non-water permeable layer and pumping ground etc. The SWP method in this time has been introducing initially and carried into a the execution tentatively at a construction-site and made a various result get through the execution.
-
In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.
-
Application of anchored or strutted wall system for the earth retention of excavation works in a populated urban area or a poor soil deposit can be limited due to various restrictions. Since the strut becomes longer in a wide excavation site, the stability of an earth retaining wall is decreased, the wall deformation is increased, and the ground settlement is also increased due to an increased buckling or bending deformation of struts. Especially, in a populated urban area, the installation of anchors can be problematic due to the property line of adjacent structures or facilities. Thus, a new concept of earth retaining system like Self-Supported diaphragm Wall can solve several problems expected to occur during excavation in the urban area. Application of self-supported counterfort diaphragm wall was verified in this paper though comparing the design of self-supported counterfort diaphragm wall with the data monitored during excavation in Singapore.
-
The project of Construction of Siem Reap bypass road in Cambodia consists of alignment improvement of existing route, extension of width of road and laterite paving. This project is carried out by fast-track method on the design and construction for bypass road of 15.2 km length and 8m width for five months. Though some difficulties for the construction works such as the location of borrow pit and rock source, rainy seasons etc, the construction could be completed successfully owing to the cooperation of related authorities, company and residents. This 2 way Angkor detouring road will function as industrial roads in Siemreap region. These new two roads will not only bring better logistics requirements and safety, but also impact to poverty alleviation and preservation the beauty of the ecological environment of Angkor region. The basic information related to geotechnical engineering of this project is introduced.
-
South anchorage(AN1, Myodo side) of supension bridge between Myodo and Gwangyang is designed as rock anchorage with 36m anchor length using the resistance of rock mass in Myodo. Checking the overall stability of the anchorage, we considered rock joints, bedding planes, fault zones and condition of rock structure in situ by analysis results for photo-lineaments, aerial photograph interpretation and drill-hole logs are considered. This anchorage consists of an access shaft, adit, and the upper and lower concrete bearing plate to introduce pre-stressing force into rock mass.
-
The suspension bridge between Myodo and Gwangyang is located in the main navigation channel to Gwangyang Harbor. So, there is need for the collision protection against large vessels. As ship collision protection, artificial island with concrete block quay wall is planned. The risk analysis and non-linear numerical analysis are introduced to consider the ship collision effects. In the Gwangyang bay area, there are some different sedimental conditions in clayey stratums. For a desirable design, we classify into four zones and 2 layers in each zone, and then determine suitable soil properties considering these zones. As a ground improvement under artificial island, DCM and SCP methods are Planned.
-
During recent years, the large soft ground improvements very rapidly increase with industrial development and it is the types and scales of structure that is enlarged by degree. Then, we must enter construct equipment to improve soft ground and we fulfilled works by carrying out soft clay soil to gain trafficability for them. For improving the soft ground, we lay geotextile on soft clay ground and fill the filter sand that can drain the pore water. Then, we landfill cover soil for come by trafficability of construction tools. Ater that we penetrate vertical drain for dehydration through soft ground. there are very complicated works. For these reason we suggest the methods of soft ground improvement constructions.
-
Steel-concrete composite columns are popular for superstructures of bridges, and the outside steel attached to the shaft increases the shaft resistance due to confining concrete. In this study, lateral resistance of steel-concrete composite drilled shafts was evaluated quantitatively based on numerical analysis when steel casings are used as structural elements like composite columns. Ultimate lateral resistance of composite drilled shafts with various diameters was numerically calculated through 3D finite element analysis. For that, elasto-plastic model with perfectly plasticity is involved to capture the ultimate load. A commercial FEM program, MIDAS-GTS, is used in this study. Real field conditions of the West Coast, Korea were considered to set up the ground conditions and pile lengths required for this parametric studies. Detailed characteristics of the stress and displacement distributions are evaluated for better understanding the mechanisms of the composite shaft behavior.
-
In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.
-
As plan connecting island to island or island to land is needed, a lot of long-span bridge is being designed lately in Southern part of Korea. With development of pile equipment, overhanging large-scaled concrete pile are adopted to foundation type of main tower or pylon. About the number of 15~30 group piles per tower foundation is designed to resist long-spaning super-structure load, but by restricted condition of site investigation cost, a few boring-hole tests are performed to identify sub-ground layers. Up to now, direct-curved method connecting two or three known boring logs and representative interval method are usually used to evaluate unknown depth and rock properties at locations where piles are constructed. Because this approach is not logical and so rough, much difference occurs between designed length of piles and real length of it. In this paper, using a lot of various prediction method(reciprocal distance method, inverse square distance method and kriging method etc.), we suggest optimum length of group piles.
-
Piles and pile foundations have been in common use since very early times. Usually function of piles is to carry load to a depth at which adequate support is available. Another important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the wind load, lateral action of earthquake, and so on. After Broms (1964), many researchers have been suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient and it gives confusion to pile designers. Lateral earth pressure, essential in lateral capacity estimation, influenced by pile's behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare to the estimation value by previous research. To model the pile set up in the sand, we use the chamber and small scale steel pile, and rain drop method. Test results show the rotation point is formed where the Prasad and Chari's estimation value, and they also show multi layered condition affects to location of rotation point to be scattered.
-
본 연구는 낙동강 하구 대심도 연약지반에 항타관입된 PHC 말뚝에 대하여 SPT 지지력 공식으로 부터 계산된 선단지지력 값과 PDA 시험에서 얻어진 선단지지력 측정값을 비교하였다. 또한, SPT N값이 50이 넘는 경우에 대하여는 N값과 롯드 관입깊이의 선형관계를 가정하여 30cm 관입깊이에 해당하는 N값을 적용한 경우와 CPT
$q_c$ 와의 상관성을 이용하여$q_c$ 값으로부터 N값을 산정한 경우의 2가지 분석을 수행하였다. 그 결과, 본 연구에서 적용한 SPT 지지력 공식 모두 측정된 선단지지력 값과 차이가 났으며, SPT 지지력 공식은 대심도 연약지반에 항타 근입된 말뚝에 대하여 실제적인 설계를 수행할 때 신뢰하기 어려운 것으로 나타났다. 또한, N>50인 경우에 대하여 N값과 롯드 관입깊이의 선형관계를 적용하는 것은 지지력을 매우 과대평가하는 것으로 나타났다. -
Top-Base Method is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and the effect of restraining settlement when the bearing capacity of the ground is not enough. Top-shaped cone concrete foundations are installed in graveled laid over soft ground. The principle of the basic method is to maximize effect of dispersing the overburden pressure by increasing the contact area of the top-shaped cone. Therefore, the bearing capacity is increased and the settlement is decreased by the embedded resistance of pile part in the ground. In this paper, the plate bearing test was conducted to evaluate the feasibility of Top-Base foundation. Based on the test results, the coefficient of subgrade reaction, elastic modulus, and settlement of foundation on reclaimed land was derived.
-
As increasing demand on marine structures and skyscrapers, a deep shaft pile foundation is more to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in civil or architectural construction, steel pile is largely used with its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is about the Composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile simultaneously while preserving the advantage of steel pile that large resistance to horizontal force and bending moment. A Non Welding connection method is applied to this composite pile and this method could reduce the cost and period of construction and could increase the quality of construction by solving the problem of current welding method and by improving the workability of pile connection. In this study, characteristics of driveability of non welding composite pile is analyzed prior to main project while the purpose of main project is proving the applicability of Non Welding Composite Pile by conducting various kind of loading test to analyze the characteristics behaviour of Non Welding Composit Pile and by verifying stability of non welding connection pile.
-
Ultimate lateral loaded pile capacity is influenced by soil conditions. Methods of calculating ultimate lateral loaded pile capacity in homogeneous soil were suggested by a lot of previous researchers.(Broms 1964, Petrasovits & Award 1972, Prasad & Chari 1999, Zhang et al. 2005) There is only few homogeneous soil in actual condition, however, it could be not conviction that the methods from previous researchers are correct in multi-layered soil. In this study, the variation of ultimate lateral loaded pile capacity was analyzed in the various multi-layered conditions, ultimate lateral loaded pile capacity was calculated by the methods from previous researchers. For this study, the Lateral Pile Load Tests (LPLT) were performed in calibration chamber, the soil was composed by 3 layers and each layers had a various relative density. The results of LPLT were compared with calculated results from the previous researchers.
-
In this study, to analyze the rotation point of piles, the laboratory lateral load test was performed. The lateral load bearing capacity is one of the important factor related with structure failure directly. Analyzing rotation point in different soil condition, relative density and stress condition, leads more accurate ultimate lateral bearing capacity. Also, reliability was analyzed about established 예측식 as applying to tapered pile. As a result, the established prediction was suitable to cylider pile, but not to tapered pile.
-
Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurisation causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. Bi-directional load tests using O-cell are now becoming common practice around the world, particularly where the loads to be applied are high or where it is not convenient to perform top-down loading tests. In the study, calculate ultimate capacity of bi-directional load test using FEM and beam on elasto-plastic foundation theory.
-
Recently, the construction of buildings and large bridges has been increasing rapidly causing foundation structure growing larger then before, especially in the use of large size cast-in-place piles. Barrette Pile will usually be used at the site where diaphragm wall is the retaining wall to save time and cost in mobilization of equipments. This study uses bi-directional loading test data obtained from two different sites to observe the bearing capacity and displacement characteristics of barrette pile. Numerical analysis of the test is done by using commercial 3D computer program and the interface effect and capacity of the pile as well as displacement characteristics of the pile is verified.
-
A Study of Field Loading Tests for Derivation of Load Transfer Curves of the Driven Steel Pipe PilesAs computation technologies has developed, the analysis using load transfer is mainly performed. But most of the functions used in the above program has been developed in foreign countries. Also in our nation, lots of studies concerning load transfer are being researched. The investigation of suitability about the piles installed in our grounds, however, is required as functions acquired experientially, basing on the piles installed in foreign grounds. In this background, the load transfer curve required to use load transfer method on its design through the analysis of field tests inside our nation intends to be made, on which this research focuses.
-
The spot where bottom foundation of a marine bridge is constructed is deep in depth of water and a bedrock, bearing stratum, is very deeply distributed. So, I analyzed material of soil profile and then evaluate bearing capacity and safety of settlement when a stake of site construction is designed using a projection cast in place concrete pile and a sacrifice steel cast in place pile. Also, I analyzed and researched pratical affairs like a slime processing and plumbing maintenance in supervision of execution.
-
기초의 지지방식 중 깊은 기초로 분류되는 말뚝기초는 일반적으로 고강도의 기성강관(Spiral Steel Pipe)을 재료로 한 말뚝을 사용하는 것이 설계 및 시공측면에서 유리하나, 현재 국내 외의 치솟는 건설원자재 비용 및 고유가에 따른 장거리 운반비용의 증가와 더불어 건설현장에서의 경제적 부담이 상당부분 증가되고 있는 실정이다. 특히, 개발후진국을 비롯한 건설 산업의 국제적 진출에 대한 활기와 더불어 해외현장 변동상황(원자재의 수급 문제에 따른 공기지연 및 경제성) 등을 고려하면 이에 대한 능동적인 대처가 절실할 수 있다. 본 사례는 중동지역
$\bigcirc\bigcirc$ 조선소의 이러한 현장여건을 고려하여 중 소하중 규모의 크레인 기초에 적용된 말뚝의 구조 해석적 검토와 지역 지반조건을 반영하여 안정하고 현지조달이 가능한 말뚝 재료의 변경을 제안한 경우이다. 본 검토에서는 기초 말뚝의 정역학적 허용지지력과 기초지반 조건을 고려한 항타관입 분석 및 크레인 이동하중을 고려한 응력해석을 실시하여 최대연직력, 모멘트, 전단력, 응력비 등을 비교하였으며, 동일한 검토조건하에서 결과를 바탕으로 변경 가능한 말뚝을 선정하였다. 기초지반에 대한 적정안전율을 갖는 허용지지력 및 구조적 안정성의 확보가 가능한 콘크리트 말뚝으로의 변경이 가능하며 상부하중 규모에 따라 설치간격에 따른 파일본수의 증 감이 발생되었다. -
LRFD Resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the freamework of reliability theory. Reliability analysis was performed by the First Order Reliability Method (FORM) using resistance bias factor statistics.The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.
-
This study is to evaluate the characteristics of bearing capacity for granite soils by N-value. The partial data is investigated for practical evaluation of weathering degree and bearing capacity on granite soils. The settlement is linearly decreased when the N-value is less than 50, but the settlement isn't constant when the N-value is more than 50. This is the affect of ground water. Therefore ground water is detailed evaluated. The bearing capacity is linearly increased when the N-value is less than 30, is inactively increased when the N-value is between 30 to 50, is constant when the value is more than 50.
-
CPT 시험은 지난 30여년 동안 지반조사 분야에서 널리 이용되어 왔다. CPT 콘의 근입은 항타말뚝의 근입방법과 유사하기 때문에, CPT 콘의 선단저항력을 이용하여 말뚝의 지지력을 산정하려는 연구가 많이 수행되어 왔다. 본 연구의 목적은 기존에 제안된 CPT 선단지지력 공식의 적용성을 분석하는 것이다. 이를 위해 낙동강 하구 대심도 연약지반에서 수행된 항타 PHC 말뚝에 대한 총 172개의 PDA 시험자료와 80개소의 CPT 자료를 수집하였다. PDA시험의 CAPWAP분석에서 얻어진 선단지지력과 각 CPT 지지력 공식에서 산정된 선단지지력을 비교함으로써 각 공식의 적용성을 분석하였다. 분석에 이용된 CPT 지지력 공식은 Aoki 방법, Meyerhof 방법, Penpile 방법, Philpponnat 방법, LCPC 방법, Schmertmann 방법, Zhou 방법, ICP 방법, Eslami & Fellenius 방법, 그리고 UWA-05 방법의 총 10가지이다. 분석결과, Aoki 방법, Phillipponnat 방법, ICP 방법 그리고 LCPC 방법 순으로 그 적용성이 높은 것으로 나타났다.
-
In this study load transfer and hydraulic fracturing of core zone of object rockfill dam are estimated and monitored by a numerical analysis and a instrumentation immediately after the construction and during the first impounding. The estimated results are compared with the monitored results. It reveal that the core zone is safe on the hydraulic fracturing.
-
In this research, mainly research about the structural and functional stability of sea dyke with variation of seepage condition after final closure. The piezometric head (water head in embankment) monitoring system was installed at two representative final closure section. The dredged fine sand filling condition was evaluated by in-situ test results. Also, the numerical analysis was performed to determine the permeability of bottom protection layer filled with dredged fine sand by monitoring results. According to numerical back analysis results, the coefficient of permeability of bottom protection section of is
$7.6{\times}10^{-6}$ m/sec. These results are noted that the bottom protection layer of sea dyke was strong and intensively filled with dredged sand. Also, based on the seepage analysis, the seepage flux of this sea dyke was calculated about$2.42m^3$ /day/m which is 29% decreased value compare with adjacent sea dyke. -
본 연구에서는 기존의 배수필터를 개선함으로써 댐, 제방의 외부 유입 침투수를 차단할 수 있는 일방향 배수필터의 가능성을 확인하였다. 일방향 배수필터는 댐, 제방 내부의 침투수는 외부로 배출시키면서 외부의 유입 침투수는 차단하도록 여러 겹의 시트를 겹치도록 고안한 것으로, 본 연구에서는 일방향 배수필터의 가능성을 확인하고자 실내모형실험을 수행하였다. 실내모형실험을 진행하는 동안 계측되는 간극수압계를 이용하여 모형 댐, 제방의 거동을 확인하여 일방향 배수필터의 적용 가능여부를 확인하였다.
-
Differ number of seismograph to the composition dam by recently frequent earthquake and analyzed responsiveness. Interest for dam inner place by increase of something wrong flood and inside and outside of the country earthquake appearance according to unusual change of weather is risen, on important urea in dam safety floodgate school register by structural safety divide can. Therefore, by PMP (PMF) of dam and increase of domestic earthquake occurrence, need research about earthquake resistant nature ability estimation of water resources facilities. Because responsiveness analysis applies number 0.154 ~ 0.25 g of seismograph, seismic wave that use in analysis is being suitable in dynamic analysis of construction such as Rockfill dam from representative chapter cycle faction and recommend in domestic internal examination design workbook, and use results applied much Hachinohe wave onions in van abroad.
-
In this study, large triaxia mpression tests of sand-gravel soils were carry out to clarify the influence of fines on shear strength characteries. Two soil specimens with/without fines that is used for construction material of dam were prepared. One was reproduced with wide range of grain size and the other was removed fines below 2mm from the one. The compaction tests proposed by our center were performed to obtain relative density of the specimens, and then each specimen was adjusted two dry density. The large triaxial compression tests were carry out under CD condition. Based on the results, the sand-gravel soils with low fines content has no effect on shear strength characteries.
-
Recently, the use of C.S.G is gradually increasing as the construction material for dam, road, revetment and so on. The strength characteristics of C.S.G is affected by various influence factors such as specimen size, maximum grain size and water contents. Therefore, When designing and constructing the C.S.G structure, it is very important for us to understand the nature of used materials well and to test it's quality. Commonly, C.S.G strength test is used the cylinders specimen size of
$15{\times}30$ at KS F2405. But, the specimen size extracted from the field structure is not regular. This paper aims at offering the experimental data about the compressive strength and elasticity modulus by change of the specimen size for the effective quality control of the C.S.G structure. -
CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.
-
In the construction of dam, the key factor which decides the type of dam is security of materials resource. Because of the large scale earth work, the ability to supply the materials is essential part about economical efficiency. The research is the case study about controlling the plan to secure the material resources in the design of Buhang multipurpose dam. In case of Buhang multipurpose dam, at that time of basic design, it was planned to use a rock fill material. From the detail investigation about the river bed accumulative layer widely spread on the submerged district on the basic design, the research is accomplished to replace rock material with gravel material. After the investigation of whole reserves of gravel material, estimation of conformity as dam construction material from analysis of grain size distribution, the case study of oversea construction, and the material property comparison between rock fill material and gravel fill material, it is verified th possibility of using the gravel fill. Thereafter, the analysis of dam stability using a gravel fill material is accomplished. Finally, A gravel fill material can be used as the main construction material of CFRD, therefore the efficiency of resource recycling in the submerged area is maximized, and the established plan is more advantageous to stability, constructibility, environmentibility than the case of using a rock fill.
-
This study describes the aging behavior of soils and its mechanism, which have been reported in the literatures mainly by Mitchell(1986) and Schmertmann(1991). It could be known that aging of soils has both positive and negative effects on mechanical properties of soils. In order to show aging effects on dam behavior, a parametric study was carried out based considering the presence of a weak area within clay core zone of the fill dam. From the comparison of results obtained from numerical analysis and filed investigation, age-softening phenomena occurred within core zone during about 30 years after its completion.
-
Seismic safety analysis of rockfill dams are consist of the stability analysis as an simplifed method and the dynamic analysis as an detailed method. When high risk dams such as Multi-purpose dams were often applied detailed method by dynamic analysis, dynamic properties of dam materials such as shear modulus are considered as most important factor. Dynamic material properties such as shear modulus had to be investigated by cyclic triaxial test et al. during design and construction stage but these were not conducted because of the condition of domestic seismic design technique. MASW and SASW methods had been applied as a non destructive method to investigate dynamic material properties of existing rockfill dam, has no problems in dam safety at present. These methods were usually performed under the assumptions that the subsurface can be described horizontally homogeneous and isotropic layers. Recent studies(Marwin, 1993, Kim, 2001) showed that surface waves generated through inclined structures have different characteristics from those through a horizontally homogeneous layered model. further Kim et al(2005) and Min and Kim(2006) showed that central core type rockfill dam overestimated the shear wave velocities as increasing the depth through the 3D numerical modelling dut to the effect of outer rockfill and geometrical reasons In this study the results of shear wave velocities of seven rockfill dams form comprehensive facility review, was carried out from 2003 to 2007, were collected and analysed to establish the shear wave velocity distribution characteristics in increasing confining stress in rockfill dams and surface wave velocity ranges in rockfill dam through MASW and the limitation in application are discussed to be utilized as an reference value for dynamic analysis.
-
Park, Chal-Sook;Lee, Kyu-Tak;Yum, Kyung-Taek;Kim, Yoon-Ku;Kang, Bong-Gwon;Lee, Jae-Weon;Lim, Seok-San;Jeong, Ji-Yearl 869
Coffer dam for tunnel type spillway in inflow section of Dae-am dam was originally planned as 2 lines sheet piles with Water Zet method. But, the result of pilot test was caused of some problems that vibration during installation of pile could pollute water and water leakage could the lower part. So, sheet piles was not satisfactory for faculty of coffer dam. Structural instability of sheet pile system need to reinforcement. Characteristic of Dae-am dam was small reservoir capacity but wide drainage area, of which it was judgment that security of leakage and stability was difficult during excavation of inlet part. So, we consider that water curtain method utilized with in site pouring concrete pile method was designed at weir part of spillway. We were known about basement rock that geological boring was carried out in weir part. After taking a deep consideration, PRD method was accepted as a new method. Concrete pile by PRD was installed to below country rock. CJM method was carried out with PRD. After making concrete wall using Top-down method, earth anchors were installed for supporting it. According to the result of numerical analysis, as water level rises, wall is stable. -
If gas hydrate dissociates due to natural and/or human activities, it generates large amount of gas and water. Upon gas hydrate dissociation, a generated pore water pressure between soil particles increases and results in the loss of an effective stress and degradation of soil stiffness and strength. In order to predict the generated excess pore water pressure due to gas hydrate dissociation, two methods based on small hydrate concept (SHC) and large hydrate concept (LHC) are proposed. An excess pore water pressure generated by the gas hydrate dissociation in the Storegga Slide was calculated using two proposed methods.
-
A method for predicting surface failures which occur during heavy rainfall on mountain slopes is proposed by using the digital land form model that is obtained by reading altitude on a topographical map at 10m grid point space. A depth of a potential failure layer is assumed at each grid point. In the layer, an infiltrated water movement from cell to cell is modeled in the study (cell is a square of the grid). Infiltrated ground water levels which show the three dimensional effects of a topographical factor in an area can be hourly calculated at every cell by the model. The safety factor of every cell is also calculated every hour by the infinite slope stability analysis method with the obtained infiltrated ground water level. Failure potential delineation is defined here as the time when the safety factor becomes less than unity under the assumptions that effective rainfall is 20mm/h and continues 20 hours.
-
Most of current slope safety analysis consider only the effect of the rise of underground water level. However, because the infiltration of surface water into the ground is believed to have signification effect on slope stability, the present study performed slope safety analysis in case of the rise of underground water level, infiltration of surface water, and both resulting from rainfall, and examined their effect.
-
In Korea, more than 70% of the territory consists of mountains. Therefore, the construction of roads and railways has generally involved with a steep rock slope in which the event of rockfalls are often occurred due to the weathered rock conditions and rainfalls etc. This is dangerous when the rock falls into the road and railway on which vehicles and trains are running. In order to prevent such rockfalls, the rockfall protection fence consisting of post, wire rope, and PVC coating steel net has most used at the bottom of rock slopes. In a general practice, an absorbing rockfall energy, 50kJ is specified by the Ministry of Construction and Transportation. However, questions still remain about whether the rockfall protection fence works effectively or not. In this study, a typical wire rope used in the standard rockfall protection fence was replaced by the high carbon steel wire rod and to validate its capacity of rockfall energy absorbing the field rockfall tests were conducted. The testing results show that a new rockfall protection fence using the high carbon steel wire rods can absorb the rockfall energy more than 50kJ and 20% of construction cost was saved in comparison with the previous rockfall protection fence.
-
도로절토사면을 지속적으로 관리함에도 불구하고 집중호우 시 도로절토사면 붕괴로 인한 피해가 속출하고 있다. 이러한 절토사면 붕괴에 의한 피해를 최소화 하기위해 각종 신공법들이 개발, 도입되고 있으며 IT와 접목된 상시계측시스템도 많은 현장에 적용되고 있다. 국토해양부 각 지방국토관리청 산하 국도관리사무소에서 관리중인 절토사면 중 현재 상시계측시스템을 운용하고 있는 현장은 총 93개소이며 이들 현장들에 문제가 발생할 시 즉각적으로 경보시스템이 작동하여 붕괴에 의한 피해를 최소한으로 줄일 수 있다. 또한 시스템 작동에 차질이 없도록 정기적인 현장 점검이 이루어지고 있으며 2008년 3월경에 한국건설기술연구원, 한국시설안전공단, (주)GMG에서 합동현장조사를 실시하였다. 이 현장조사 결과를 토대로 전국국도 상시계측시스템의 현황 및 특성, 상시계측시스템의 문제점 및 개선방향에 대하여 분석하였다. 이에 본 연구에서는 전국 국도 사면 중 상시계측 시스템이 설치된 현장에 대하여 암종별, 규모별, 지역별로 분석을 실시하였으며 특히 상시계측시스템이 설치된 현장 중 붕괴발생현장 및 붕괴위험 현장에 대하여 붕괴특성분석, 유지관리 사례분석 등을 실시하였다.
-
From the result of precise field investigation and stability analysis for the cut slope, following results were acquired. 1. The cause of the collapse of cut slope came from circle sliding collapse by fault zone which remained inner weathering zone. 2. The existing destructed soil and rock can be removed by reinforcement. And to prevent the additional destruction, it is judged that applying the method after relaxing the slope would be reasonable. 3. To make cut slope stable, soft rock layer should be done cutting 1:1.5 and 1:2.0 ~ 1:2.5 for weathered rock and soil layer. 4. Heavy water leakage section should be applied horizontal drain method so that water pressure should not act to the cut slope.
-
Rockfall and landslide bring about a great social loss with loss of property such as obstruction of traffic and damage of the crops as well as casualty. The purpose of this study is to develop a mobile equipment for local risk factors detecting of road slope. The mobile equipment is designed to receive the sensing data from the measurement sensors, which are installed to detect the dangerous signs from the slopes, as loaded on a vehicle which is moving around to the places where the sensors are installed. In general, more than one mandatory data logger, which is very expensive, must be installed at each slope for the automatic measuring system, but in case of this developmental system, the inexpensive routine measurement can be performed regardless of the number of slopes due to the single unit of information gathering vehicle. This study is going to develop technologies that are expected to be applied to not only slope but also tunnel and bridges which might have the partial risk and need measuring.
-
Acoustic emission(AE) is low-energy seismic event associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. Rock slopes are usually large in scale and there are many discontinuities in rock mass. AE waves are strongly attenuated when they propagate through joints. Thus we should resolve the attenuation problem to monitor large volume. In this study, we developed waveguide which is composed of two different materials, cement mortar and stainless steel rod. And several laboratory tests on developed waveguide are performed to obtain generalized AE parameters to predict the failure stage in rock slope. Comparing field data with experimental data in laboratory tests, failure stage of rock slope can be evaluated. To verify and optimize the developed monitoring method, we are now carrying out the field application at a rock slope.
-
Recently, slope stability analysis in current design criteria is criticized for its unrealistic assumption of groundwater table and slope stability analysis incorporating seepage analysis considering rainfall is gaining a recognition as an alternative. However, a reasonable method for determining the rainfall used in the seepage analysis has not yet been established. Rainfall input for seepage analysis is a time series of rainfall and is similar to the hyetograph which is usually obtained from hydrology. In this paper a method to obtain the hyetograph from the intensity-duration-frequency is proposed. The resulting hyetograph can be used in the in the slope design stage. Also some considerations for practical application of slope stability analysis considering the rainfall is included.
-
In recent, the collapses of cut-slope is gradually increased due to the heavy rains accompanied by typhoon. Specially, many cut-slope failures and landslides was happened to Goheung, Yeosu, Suncheon region, Jeonranamdo in the middle of September 2007. The slope of investigation is width 20 m, height 22 m, and the circular failure was occurred. The parent rocks of the slope are pyroclastic rock, namely andesite, andesitic tuff et al. and the weathering grade is completely weathered to residual soils owing to rapid weathering process and has the existence of fault zone and mafic dyke. Also, lots of extension cracks are presented and the hydrologic condition is very deteriorated. As a result of the limit equilibrium analysis, the safety factor is 1.09(in dry season) and 0.64(in wet season). For the stabilization of the cut-slope, we decided to use the retaining wall, anchors and drainage apparatus.
-
The purpose of this study was to evaluate the effect of vegetation on the cutting slope applied by vegetation system in the whole land. The engineering characteristics of slopes were investigated using the face mapping and physical tests. From the statistical methods, a relationship between a geologic stratum and degree of covering was independent. Therefore, the afforestation of slope was affected more by condition of vegetation as direction and opening of joints, and a topsoil state than by conventional classification of layer. It was concluded that the adjustable vegetation on the slope considering condition of geometric shape of slope, joint data and spontaneous type could make useful early afforestation.
-
KICT has been carrying out inventory research on the cut slopes of national roads. Inventory research results are basic data used in cut slope management system. Inventory data are classified by general status, cut slope characteristics and inspector opinion. Cut slope inventory data are utilized to figure out dangerous slopes and decide survey ranking of detailed safety diagnostication. This paper will draw dangerous cut slope and more important inventory data in Chungcheongdo via correlation analysis.
-
In this study, to evaluate the slope and tunnel stabilization method using pc cable with bulbed. To estimate the application of tunnel support using field tests and numerical analysis results. The reinforcement effects of slope stabilization method reinforced by PC cables were estimated compared with conventional soil nail system that reinforce the slope using rebar.
-
The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. Cutting-slope adjacent to outlet of spillways had been originally designed to be 63 degrees and about 65m in height. Examination is carried out in preceding construction that it is caused to some problems possibility which of machine for slope cutting couldn't approach to the site, blasting for cutting slope might have negative influence on highway and roads nearby, and fine view along the Tae-hwa river would be eliminated. In order to establish stability of tunnel and more friendly natural environment that we are carry out detailed geological surface survey and analysis of slope stability. So, we are design and construct for tunnel excavation with possible method that it is keep up natural slope. The result of survey and analysis that natural slope was divided 3 zone(A, B, C zone). In A and B zone, in first removed floating rock, high tensile tension net is install that it prevent of release and falling of rock, in order to security during under working. In addition to, pre-stressed rock anchor is install purpose of security during tunnel excavation because of fault zone near vertical developed above excavation level. Zone C is relatively good condition of ground, design is only carry out random rock bolt. All zone are designed and constructed drainage hole for groundwater and surface water is easily drain. Desinged slpoe is harmony with near natural environment. Successfully, construction is completed.
-
In this study, a series of scaled model test were carried out in order to find factors that influence the ultimate load of underreamed anchors. Model anchors were made of arcril and 3cm in diameter. Series of tests were performed with various conditions such as density of soil, diameter of bulb, and number of bulb. Type of soil was Jumunjin sand and relative density varied 40%, 60%, 80%.
-
Ground anchor should not be used in soft clay, because anchor resistance can not be guaranteed. However, there is a way to increase the capacity of anchors. The pulse powered anchor is an underreamed anchor by using high voltage electrokinetic pulse energy. In this paper, conceptual introduction of the pulse powered anchor was presented. Anchor pull-out tests were performed at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea. Data were analyzed in order to verify the performance of pulse powered anchors.
-
From the result of precise field investigation and stability examination for the rock slope, following results were acquired. 1. The weathering rock itself, existing fault zone and underground water complexly effect cut slope so that plane destruction may appear by fault zone. 2. The reinforcement force was decided by the result of limit equilibrium. 3. For rock cut slope, the Rock Bolt was judged as the most proper method to the cut slope as comparing/analyzing Rock Anchor, Rock Bolt and method after relaxing the slope.
-
The finite element analysis of transient water flow through unsaturated soils was used to investigate effects of hydraulic characteristics, initial relative degree of saturation, methods to consider boundary condition, and rainfall intensity and duration on water pressure in slopes. The finite element method with shear strength reduction technique was used to evaluate the stability of slopes under rainfall. The slope-related disasters in Korea usually occur between July and September during the typhoon and localized heavy rain. This means that the rainfall is the most important factor that leads to the slope-related disasters. The slope-related disasters can happen at very short time and lead to big damage. To forecast the change of the heave of the groundwater in slope the Seep/w program was used.
-
The purpose of this case study is corrosive fall in Upper-Slope. Upper-slope of this slope affect in fall of the cut-slope because of wide valley. Deposit which is piled up naturally is the sinkage occurs gradually in upper-slope.
-
Many cut slopes are situated on national highways. In this study, we chose rock slopes of moderated weathering grade to analyze general strength parameters of cut slopes. We analyzed the strength parameters of selected rock slopes by the experience method. Also, we arranged the strength parameters by area and rock types.
-
In order to investigate a strength anisotrophy of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area, and a series of uniaxial compressive strength test and Brazilian test were carried out. The strengths were decreased with increasing the moisture contents in rock sample by pore water. As the result of test considering the anisotropy of rock strength, the compressive strength in condition of failure occurred parallel to stratified layer is decreased about 12-26% more than that in condition of failure occurred inclined to stratified layer.
-
When construction of high pressure jet-grouting is to be performed, it has been reported that applied cement slurry which hasn't got dried out can cause severe environmental pollution, and can flow into near streams and fish farms. Several laboratory tests were performed in this study in order to verify safety of paste-like grouting material that was developed newly to be applied to void in the ground. According to experimental test results, it is proved to be so safe that application of the newly developed flowable grouting material can prevent the materials from spilling into surrounding areas and is not harmful to fishes.
-
The mechanical characteristic of Lightweight Foamed Soil(LWFS) are investigated in this research. LWFS is composed of the in-suit soil, cement and foam to reduce the unit-weight and increase compressive strength. The unconfined compressive tests are carried out on the prepared specimens of LWFS with various soil types to investigate the relationship between compressive strength of LWFS and physical properties of soil. The result indicate that coefficient of gradation(
$C_g$ ) and liquid limit(LL) are more important factor affecting compressive strength than other physical properties of soil and coefficient of gradation($C_g$ ) and liquid limit(LL) can standard to determine the optical soil among the in-situ soils for LWFS. -
Highly plastic clays in their normally consolidated state are not linear but are concave upwards. Thus their compression index deceases with the increase in consolidation pressure. Likeness the e - log
${\sigma}\;_{\upsilon}\;'$ curves of the silts are not linear but are convex upwards. In this paper, conducted consolidation test with four undisturbed field soil and found that their e - log${\sigma}\;_{\upsilon}\;'$ plots are not linear. And analyzed difference of settlement between computed value with compression index($C_c$ ) and computed value with improved compression index($\mathbb{C}$ ). -
This study conducted the decision method of lateral flow in abutment structures founded on the soft soils and the reliability analysis on the foundation pile for abutment. On the basis of the results, this study proposed the reliability design model. Reliability analysis was conducted by applying second moment method, point estimation method, and expected total cost minimization to lateral movement index, lateral movement decision index, modified lateral movement decision index, and circular failure safety factor for the decision criteria of lateral flow. The reliability index by analysis method had a similar tendency each other. Point estimation method was found as a practical method in the aspect of convenience because it could conduct the analysis only by mean and standard deviation as well as the partial derivative on random variables was not necessary. Optimum reliability index and optimum safety according to increasing in failure factors and load ratio were analyzed and loads and resistance factors of the design criteria of optimum reliability were estimated. It presented rational design model which can consider construction level and stability and economical efficiency overall.
-
Batch type and column type experiments were performed in order to predict adsorption and movement within soil. Clay minerals montmorillonite and kaolinite were respectively added to paraquat which is a cationic compound with long residual time, 2,4-D which is an anionic compound with relatively short residual time and napropamide which is an amphoteric compound. Therefore, it is very important to determine the movements of toxic pollutants in the ground soil to establish measures to prevent soil grounds contamination and to restore contaminated soils effectively, because contamination of soil is getting severe due to these toxic wastes, industrial waste water, and agricultural chemicals, etc. Therefore, in this study, we have carried out column and batch experiments by using general toxic organic compounds as test samples in order to restore contaminated soils effectively as well as to prepare a basic data to develop absorbents that will remove various toxic organic compounds, with a grandiose purpose to prevent contaminations of soil and grounds due to various toxic organic compounds.
-
To investigate the effect of sample size on coefficient of consolidation of non-homogeneous soil, the result of a large size consolidation test using a huge undisturbed sample with
$1200mm(D){\times}2000mm(H)$ in dimension is compared with that of oedometer test using undisturbed small sample. In addition, test results are compared with those of same test using remold sample. Experimental results show that, due to the lump of sand/silt was mixed in sample, the coefficient of consolidation of undisturbed samples have a difference for each tests. Whereas, the difference of coefficient of consolidation between remolded large and small samples is not found. Because sample size affects the test results, sample must be carefully selected for non-homogeneous soil. -
When constructing projects such as road embankments, bridge approaches, dikes or buildings on soft, compressible soils, significant settlements may occur due to the consolidation of these soils under the superimposed loads. The compressibility of the soil skeleton of a soft clay is influenced by such factors as structure and fabric, stress path, temperature and loading rate. Although it is possible to determine appropriate relations and the corresponding material parameters in the laboratory, it is well known that sample disturbance due to stress release, temperature change and moisture content change can have a profound effect on the compressibility of a clay. The early research of Tezaghi and Casagrande has had a lasting influence on our interpretation of consolidation data. The 24 hour, incremental load, oedometer test has become, more or less, the standard procedure for determining the one-dimensional, stress-strain behavior of clays. An important notion relates to the interpretation of the data is the ore-consolidation pressure
${\sigma}_p$ , which is located approximately at the break in the slope on the curve. From a practical point of view, this pressure is usually viewed as corresponding to the maximum past effective stress supported by the soil. Researchers have shown, however, that the value of${\sigma}_p$ depends on the test procedure. furthermore, owing to sampling disturbance, the results of the laboratory consolidation test must be corrected to better capture the in-situ compressibility characteristics. The corrections apply, strictly speaking, to soils where the relation between strain and effective stress is time independent. An important assumption in Terzaghi's one-dimensional theory of consolidation is that the soil skeleton behaves elastically. On the other hand, Buisman recognized that creep deformations in settlement analysis can be important. this has led to extensions to Terzaghi's theory by various investigators, including the applicant and coworkers. The main object of this study is to suggestion the modified compression index value to predict settlements by back calculating the$C_c$ from different numerical models, which are giving best prediction settlements for multi layers including very thick soft clay. -
Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.
-
In this study, a circular and indoor soil tank foundation was manufactured to study the improvement according to the degree of turbulence arising from PBD penetration, using the existing plate-type shoe and improved V-type shoe to change the degree of turbulence. Furthermore, to study the foundation improvement effect, the strength, settlement speed in the turbulence area were compared according to the shoe penetration. The results of the study showed that the V-type shoe reduced the strength coefficient decrease effect, and the foundation improvement effect according to the degree of turbulence was identified.
-
The Vertical Drains(Sand Drains, Pack Drain, PBD) is used for Vertical Drains Method in domestic. Each of the drains is selected after it consider a field condition and efficiency of drain. A discharge capacity is very important factor, which to estimate a efficiency. And the smear Zone where disturbance area of in-suit by installation of Vertical Drains is important factor to select a drains. In this study, the complex discharge capacity test was operated for discharge capacity comparison of the Wing Drain and PBD. And a model test was operated to apprehend smear zone of the Wing Drain and PBD. From these tests, it was apprehended an engineering characteristic of vertical drain. The results of the complex discharge capacity test, a discharge capacity fell below
$20cm^3/sec$ to$1cm^3/sec$ in more than overburden load$2.5kg/cm^2$ . The Wing Drain maintained a over$40cm^3/sec$ in more than overburden load$2.5kg/cm^2$ and minimum discharge capacity$8cm^3/sec$ . The results of the smear zone test, a influence bounds of smear zone was more larger in case of the Wing Drain(rectangle) than the PBD. But when a discharge capacity of Wing Drain is considered, it was concluded which smear zone bounds difference was effected in comparison with PBD. I think that it minimized a mandrel section to minimize a smear zone effect range -
In this paper, heaving phenomenon is analyzed by laboratory tests. A laboratory test is consist of building soft clay foundation in plane-strain soil tank, construction of retaining wall, and excavation work. And range of shear strain, and destruction shape about soft clay foundation is compared, and analyzed with results of proposal formula. Using this study, safety factor is suggested for heaving phenomenon in the construction of wall on the soft clay. Actual theory is suggested by this suggested safety factor. There are various proposal formula for heaving phenomenon. For example, Terzaghi & Peck, Tschebotarioff, Bjerrum & Eide(Experience formula) and so on. Terzaghi & Peck's proposal formula is chosen, compared with laboratory test's result and analyzed in this study. A soft clay used in study is assumed homogeneous. A Depth of foundation is enough to observe shear strain by heaving phenomenon. Retaining wall is enough hard not to have vertical displacement.
-
Critical surcharge value of silt ground polluted with garbage leachate to the dyes
$q_{cr}=3.73c_u$ and ultimate bearing capacity value$q_{ult}=8.60c_u$ . Lateral flow pressure at polluted silt ground was about$P_{max}$ /3 and depth of maximum lateral flow pressure was found at that of H/3 of soft layer thickness(H). Expression of polluted silt ground of fracture baseline at stability control charge by Matsuo Kawamura is$S_v=3.56\exp\{0.51(Y_m/S_v)\}$ . -
Vertical drain method, which is one of the soft ground improvement methods, shorten s drain path to accelerate consolidation process and is applied in many sites. At a recent, composite discharge capacity experiment that analyze discharge amount by consolidation behavior with overburden pressure of soft ground in laboratory, simulates similarly with actuality. Geotechnical engineering problems such a s soft ground improvement are solved by numerical analysis by development of computer and numerical analysis techniques. Numerical analysis does that result is contrary by user's inexperience for choice of constitution model and application of analysis method. Therefore, this thesis experiments on composite discharge capacity test and study discharge capacity of drain and consolidation behavior of soft ground installed prefabricated vertical drain boards. Also, This thesis studied reasonable input parameters and constitution model by compare results of composite discharge capacity test and numerical analysis using PLAXIS that is 2D finial element numerical analysis program.
-
This study explored the compacition characteristics of organic weathered soils. Weathered soils were collected around the Gwangju University in Jinwol-dong, Gwangju city, and coal was used as organic material. Weathered soils were mixed with coal so that the ratio of organic elements against mixed soil can be 0%, 25%, 50%, and 75% respectively. Compaction tests were carried out on these organic mixture soils in different ratios of organic materials. And soap water instead of water in compaction tests was used. Through this study, We knew that the bigger the organic material ratio was, the more the optimum moisture content increased and the less the maximum dry unit weight reduced. In case of using small compaction energy, using soap water instead of water improved the compaction efficiency a little.
-
A laboratory investigation was carried out into effects of strain rate on undrained shear behavior of Holocene clay underneath Kobe Airport with an objective to evaluate the factor of safety of the retaining structure built on it. It was examined in a series of triaxial compression and extension tests performed using different rate of axial straining. A comparative compression test in which the strain rate was changed in steps was also carried out. Similar tests were performed in constant-volume direct shear box (DSB) test. And, the deformation characteristics of the clay were also examined in order to evaluate the variation of stiffness during undrained shearing. It was found that the undrained strength increased with not only the shear rate but also the consolidation period. ISOTACH properties seemed a key to govern the undrained shear behavior.
-
Shaking table tests were performed to investigate the response of liquefaction mitigation of rammed aggregate piers(RAP) on soft ground. The displacements of the soft ground reinforced by RAP under area replacement ratio 7, 14, 28% during seismic loading were measured. The result of tests showed that effects of liquefaction mitigation were affected various area replacement ratios and ground acceleration on RAP systems.
-
It has been recognized that unsaturated soil behavior plays an importantrole in geomechanics. In the last decade several constitutive models have been proposed and used in the analysis. Many of them, however, are constructed in the frame work of rate independent model such as elasto-plastic one. Although rate dependency is an important characteristics of soil for both saturated and unsaturated soils, very few models have been developed taking account of rate dependency. In the present paper, we have developed an elasto-viscoplastic model considering an effect of suction based on the overstress-type viscoplasticity with soil structure degradation. In the model, we have adopted an averaged pore pressure composed of pore water pressure and air pressure to determine the effective stress.
-
Compression index is one of the important characteristic numbers in soft soil engineering. Since 1940's, many researchers have suggested various practical solutions to define the compression index of clay using other soil properties. But, these results are only can give us an outline of soft soil behavior. In this study, the relationships between pore water pressure dissipation test results and compression index were suggested using comparison results of both tests. This relationships are based on basic concept of consolidation phenomena, essential difference between pore water pressure dissipation test and consolidation test, and disagreements between theoretical time factor and real time factor. To identify proportional factor of proposed equation, Geotechnical investigation results of Kwang-Yang(KY) site and Busan New Port(BN) site were used. The proportional factor was 0.0031 from 20 to 50% of consolidation rate where correlation parameter(
$R^2$ ) is 0.9051. -
In this study, in order to clarify the effect of the direction of cyclic shear on the post-earthquake settlement the multi-directional shear tests were carried out for Toyoura Japan standard sand, Genkai natural sand and the Granulated Blast Furnace Slag (GBFS). In a series of tests, number of strain cycles was changed as n=5-200 and the shear strain amplitude varied from 0.1% to 1.0%. The relative density was also changed as Dr=50, 60 and 70%. From the test results for Toyoura sand and GBFS, it is clarified that the post cyclic settlement is relatively large at the small relative density and becomes large with the shear strain amplitude. When the influence of the direction of cyclic shear is decreases, the post cyclic settlement strain for Toyoura sand is converged to a constant value, but the GBFS is increased with the number of strain cycles.
-
Recently the energy dependence of LNG resource is being increased. So the enlargement of LNG storage is constructed in the coastal area. Most of LNG tanks are constructed below the ground level, and thus the hydraulic uplift pressure could be a problem against the weight of tank structure. Specifically, the settlement of foundation soil in the LNG tank is also important in the aspect of safety. The low temperature around LNG tank is induced the ground freezing and hence increasing the soil volume and earth pressure. The additional lateral earth pressure due to ground freezing could be applied to the LNG tank. In this study, the stability of LNG storage tank was evaluated with consideration of freezing earth pressure by using computer program TEMP-W.
-
From the result of analysis using finite element method for the Pile Slab reinforcement length through embankment of height, soft ground and the change of cohesion following results were acquired. 1. The higher embankment of height is, the deeper depth of soft ground is, the smaller cohesion is, Pile Slab reinforcement length increased almost straight. 2. The reinforcement length is controlled by the depth of soft ground, cohesion, embankment of height and the like. Among these, cohesion of soft ground is affected the most. 3. The reinforcement length of Pile Slab is determined using by calculated formula.
-
On the Performance-based Design guideline techniques, many studies were not execued. Especially, some structures were studied on the evaluation of performance-based design. Geotechnical foundation on the structures are investigated in domestic and other countries.
-
The site of interest is a residence redevelopment area which has excavation construction with cut-off walls. The site is located over Dong-Mang-Bong tunnel and Seoul No. 6 subway tunnel. This study analyzed numerically the influence of vibrations from No. 6 subway tunnel to the basement of the redeveloped apartment away from the distance about 11m. Kyoung-bu highspeed railway's time history model with linearly reduced maximum acceleration is applied to take into the subway maximum speed of 75km/h. The maximum velocity of vibration for the cross section of the interest was estimated as 0.28cm/sec which satisfied the allowable standard of 0.5cm/sec for apartment and residence of Seoul.
-
The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall(SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below dredge level, tied together at head of soldier piles and landslide stabilizing piles by beams. There are three types of excavation wall structures: standard method for medium retained heights(<8.0m), internal excavation method and slope excavation method for deep-excavation applications(>8.0m). In the present study, the measured data from seven different sites which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea.
-
One of the most important item for insuring the stability of ground in urban deep excavation site near by major structure such as subway is displacement control of earth retaining wall. The field monitoring system is classified by two types as manual system and automatic system. The application case of latter type of field monitoring is increased because real time measurement is possible in automatic system and that is correspondent with the recent constructional trend. Though the automatic monitoring system is more useful and advanced than manual monitoring system, accuracy of the system is not verified sufficiently. It was examined that the reliance of automatic monitoring system in this paper through the comparison of monitoring result obtained one of deep urban excavation site in which the each type of monitoring system was executed concurrently. Result of the examination is that the two types of monitoring system is generally alike in view of monitoring result, so the engineering reliance of automatic system was confirmed in case site. This study was researched in restricted one case site, so it is expected more precise analysis from security of more data monitored and progressive study.
-
Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in about 400km section at 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. This wetting collapse problem for the compressibility of compacted sands, gravels and rockfills, has been recognized by several researchers. For this wetting settlement problem, we showed the test results carried out with 4 fill materials. These tests were performed under the condition that the fill materials were inundated at the first wetting. Subsequently, in this study, we investigated the long-term settlement characteristics of the fill materials under the repeated partial wetting and rising of the ground water table happend by rainfall.
-
This study carried out bender element tests in a calibration chamber in order to estimate the characteristics of soil specimen prepared in a calibration chamber. Basically, the purpose of bender element test is to measure the shear wave velocity. Bender element test cannot only confirm the status of soil specimen deposited in a chamber, but also estimate the consolidation process indirectly. In order to carry out bender element test in a calibration chamber, a pair of bender elements was installed inside the chamber, using the 'ㄷ' shaped frame. For the sandy soils having various relative densities in various stress conditions, the maximum shear modulus was estimated. From the comparison with bender element test results in a triaxial testing device, testing device and procedure was validated.
-
Increasing the flood control capacity's link that is enforcing to existing dam by unusual change of weather, While build planing construction by exiting spillway of tunnel type to dam, could know that part bed rock is formed as is different with design. Grasped topography of research area and geology state to definite distribution aspect of different bed rock, Place that achieved Surface geological Survey and correct Survey is difficult in some section enforced Electrical resistivity dipole-dipole investigation. Grasped stratigraphy distribution confirmation and fracture or weathering zone making out siding 2D-Resistivity Electrical resistivity diagram and Reverse analysis diagram, examining closely soil weathered rock rock's distribution state, established stability countermeasure plan
-
The relative density of soil indicate loose and dense state of sand. Because sand is low compressibility, initial relative density of sand is important effect factor of compression and shear behavior. To measure exactly relative density, the exactly maximum and minimum void ratio was determinated by laboratory tests. Generally, vibrating table method is adapted for minimum void ratio(KS F 2345). However KS F 2345 is not consider the particle break during the vibrating table test. In this study, The minimum void ratio is compared with a method of Pluviation and Vibrating table test results using the K-7(crushed sand). It is concluded that the K-7 sand particles were crushed during the vibrating table test and vibrating table test is not a suitable test for a crushed sand
$e_{min}$ . -
In this study, the spatial distribution of depth between alluvial soil and weathered soil of Song-do new city is analyzed using geostatistics. From analysis results, the boundary depth of north-east region is deeper than that of south-west region, and average depth of north-east region is 27.14m and average depth of south-west region is 23.25m. The boundary depth is estimated by ordinary kriging and inverse distance method, and estimated results are almost similarity. So, in Song-do new city, these two method can be used to estimate the boundary depth. The ordinary kriging method is a very useful tool because the more exact analysis of spatial continuity and distribution characteristic is possible.
-
최근 용지보상이나 환경문제 및 도로선형 등으로 인해 도로건설 중 터널구간이 늘어나고 있으며, 이로 인해 터널시공 중 크고 작은 붕괴 및 이에 대한 보강이 빈번히 발생하고 있다. 대부분의 터널이 지표하 수십 m에서 깊게는 100m 이상에서 건설되고 있어 지표에서 붕괴의 원인 및 보강결과에 대한 확인이 결코 쉽지만은 않은 상황이다. 본 사례에서는 지표하 약 130m에 위치한 터널붕락 구간에 대하여 터널내에서 비파괴검사인 3차원 전기비저항탐사를 실시하여 보강결과를 확인하였다.
-
Geotechnical sites in urban areas may have embedded structures such as utility lines and underground concrete structures, which cause difficulties in site investigation. This study is a preliminary research to establish knowledge base for developing an optimal technique for site investigation in urban areas. Surface-wave method and resistivity survey, which are frequently adopted for non-destructive site-investigation for geotechnical sites, were investigated to characterize effects of adjacent structures. In case of surface wave method, patterns of wave propagation were investigated for typical sets of multi-layered geotechnical profiles by numerical simulation based on forward modeling theory and field experiments for small-size model tests and real-scale tests in the field. In case of resistivity survey, 3-D finite element analyses and field tests were performed to investigate effects of adjacent concrete structures. These theoretical and experimental researches for surface-wave method and resistivity survey resulted in establishing physical criteria to cause interference of adjacent structures in site investigation at urban areas.
-
For a commonly used piezocone with a shoulder filter element, dilatory dissipation behavior, which shows an initial temporary increase in pore pressure, has been observed in overconsolidated cohesive soils. However, there is no appropriate way to estimate a consolidation parameter from a dilatory dissipation curve because currently available interpretation methods were developed based on the monotonic decrease of the excess pore pressure. In this study, the interpretation method for evaluation of coefficient of consolidation from a dilatory dissipation result of piezocone test was developed by performing the finite difference analysis on the dissipation after cone penetration. The distribution of the initial excess pore pressure induced by cone penetration, which is the core of the analysis, was estimated from the empirical modification of a solution proposed by cavity expansion theory and critical state concept. And the proposed interpretation method was applied to the field piezocone data and the results were compared to those obtained from laboratory tests. Its reliability was confirmed by the insignificant difference between the values of coefficient of consolidation from piezocone tests and laboratory consolidation tests.
-
In this study, S-wave velocity range is gauged in every field test method at the total 5 locations in the marine deposits in Incheon area. field test method is accomplished the SPT(Standard Penetration Test), CPT(Cone Penetration Test), SPS(Suspension PS Logger), SCPT (Seismic Cone Penetration Test) and so on. The S-wave velocity of SCPT in the downhole test method is measured lower than SPS logger at the N value > 15 range. But at the N value < 15 range, SPS logger and SCPT result is measured same. In this result, although the soil strength of the downhole test method increased, the rate of S-wave velocity is tend to be slowed. This result shows that the downhole test is difficult to apply at the place that the intensity of soil is more extreme and harder soil. And it shows that the existing Imai(1982) type that is mostly used within the country is not suitable for the marine deposits. Thus, the empirical formula that can show the range of S-wave velocity in each N value for domestic soil is needed.
-
An elementary particle of bottom ash is similar to fine sand. so which expected from replace expensive sand. Especially, If using for improvement of soft ground, It will need of study about strength, permeability and environment of the bottom ash. In this study, the bottom ash operate of physical quality, direct shear test and triaxial compression test so analyze and compare with standard sand.
-
It is well known that the standard penetration test (SPT) has been used in all over the world to get geotechnical properties of the ground. However, it is difficult to apply the SPT to the dense sand, gravel, weathered rock, etc. For the application of the SPT in these grounds, it is necessary to change in the diameter and the impact energy of the SPT. For the improvement of site investigation technology, Large Penetration Testing device (KICT-type LPT) was developed and applied to the in situ condition. The drop height and weight of the hammer in developed system were decided as 760mm and 150kg, respectively. And the developed sampler has the inner diameter of 63 mm and the length of 500 mm with the adjustment of energy ratio to the SPT of 1.5. In this study, the performance of KICT-type LPT was evaluated by using a calibration chamber system and pile driving analyzer (PDA)
-
A large diameter sampler (KICT-type large diameter sampler) was developed to take undisturbed samples from not only soft ground but also sandy and weathered ground. The KICT-type large diameter sampler was manufactured with the principle of triple core barrel sampling. In this study, the applicability to offshore ground sampling of the KICT-type large diameter sampler was confirmed at Inchoen Port construction site. And, in order to compare the quality of samples taken by the sampler with that of the traditional piston sampler, a series of laboratory tests were performed. From the test results, the samples taken by the KICT-type large diameter sampler showed higher quality than the traditional thin-walled tube samples.
-
The structure of railroad or subway is that low fare transportation system of the large traffic volume. Like this structure is subjected to the cyclic load of moving vehicle. Consequently the result of the settlement analysis or plastic deformation prediction of railroad bed could be used as an important factor in safety of the railroad. The results of cyclic triaxial test were used in the numerical analysis of power model which Li and Selig(1994) developed. The soil samples were obtained from the construction site of railroad. Cyclic triaxial test was conducted with the variation of the magnitude of cyclic load and soil types. The large magnitude of plastic deformation in the railroad bed is caused of structure failure of the railroad.
-
In our country where over 80% of land is mountainous, decomposed granite soils are often used as building materials for civil engineering works. Seashores are having great difficulties in management and treatment of marine byproducts that are left vulnerable. It is necessary to find a way to efficiently utilize such vulnerable marine byproducts. For this reason, shell and ocher were mixed together in order to efficiently utilize ocher that is being used frequently as a building material in civil works and shell that is a type of marine byproducts being thrown away. The purpose of this study is to examine the extent to which shell-ocher mixture can reduce liquefaction through cyclic triaxial test. The author of this study aims to provide the possibility for application at construction site of shell-ocher mixture.
-
The recent Sichuan earthquake(2008) in China and Iwate-Miyazaki earthquake(2008) in Japan give Korea peninsula warning that it is no more safety zone against damage by earthquake events. So, rapid and appropriate countermeasures for dam operation and management against earthquake are needed. In Korea earthquake design standard(MOCT, 1997) has been revised after Kobe earthquake. Installation of seismometer and monitoring of earthquake for special class dams is requlated in dam aseismic design standard(MOCT, 2001). Accelerometer installation project for existing dams has been carrying out by K-water to establish an earthquake network for dam safety. Real-time dam earthquake monitoring network has also been developed to detect an earthquake efficiently and to warn to dam administrators as soon as possible. In this study, dam real-time earthquake monitoring system developed by K-water was introduced and applicability of real earthquake record measured by this system to dam safety management was illustrated.
-
Soil compaction works are essential to construction of dams, breakwaters and roads in order to avoid unexpected settlement/deformation of superstructures. Taking advantage of oscillating accelerometer, this research was made to complement existing methods for assessment of soil stiffness. In order to examine the validity of compaction-degree suggested in the study, tests on vibration characteristics using accelerometers was also performed. Test results for sand and gravel mixtures and Korean standard sands were compared and evaluated by conventional assessment methods under varying conditions as of input frequency, size of loading plate and relative density.
-
In the mechanistic-empirical trackbed design of railways, the resilient modulus is the key input parameter. This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters,
$A_E$ and the power of mean effective principal stress,$n_E$ . The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain,${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation. -
Stone columns, locally called "GCP (granular compaction pile)" can be used to improve strength and resistance against lateral movement of a foundation soil like rigid piles and piers. Also installation of such a discrete column facilitates drainage, and densifies and reinforces the soil in the sense of ground improvement. The integrity of the GCP has been indirectly controlled with the records of each batch including depth and the quantity of stone filled. An integrity testing was attempted using crosshole S-wave logging. The method is conceptionally same as the crosshole sonic logging (CSL) for drilled piers. The only and critical difference is that S-wave should be used in the logging, because P-wave velocity of the stone column is less than that of ground water. The crosshole sonic logger does not have the capability to measure S-wave propagating through the skeleton of crushed stone. An electro-mechanical source, which can generate either P- or SH-waves, and a 1-D geophone were used to measure SH-waves. Two 76mm diameter cased boreholes were installed 1 meter apart across the nominal 700mm diameter stone column. At every 10cm of depth, shear wave was measured across the stone column. One more borehole was also installed 1 meter outward from the one of the above boreholes to measure the shear wave profile of the surrounding soil. The diametric variation of the stone column with respect to depth was evaluated from the shear wave arrival times across the stone column, and shear wave velocities of crushed stone and surrounding soil. The volume calculated with these variational diameters is very close to the actual quantity of the stone filled.
-
The quality of track-bed fills of railways has been controlled by field measurements of density (
${\gamma}_d$ ) and the results of plate-load tests. The control measures are compatible with the design procedures whose design parameter is$k_{30}$ for both ordinary-speed railways and high-speed railways. However, one of fatal flaws of the design procedures is that there are no simple laboratory measurement procedures for the design parameters ($k_{30}$ or,$E_{v2}$ and$E_{v2}/E_{v1}$ ) in design stage. A new quality control procedure, in parallel with the advent of the new design procedure, is being proposed. This procedure is based upon P-wave velocity involving consistently the evaluation of design parameters in design stage and the field measurements during construction. The key concept of the procedure is that the target value for field compaction control is the P-wave velocity determined at OMC using modified compaction test, and direct-arrival method is used for the field measurements during construction. The procedure was verified at a test site and the p-wave velocity turned out to be an excellent control measure. The specifications for the control also include field compaction water content of$OMC{\pm}2%$ as well as the p-wave velocity. -
There are 21 abondoned coal mines drained out mine water in gyeong sang do. We monitored the water quality of 31 mine drainage from 1995. The most of mine drainage was neutral as the average pH was 6.22 and Fe, Mn, Al concentration was below 10mg/L. The result showed the tendency of decreasing of flow and metal concentration. The highest Mn concentration was detected in bonghwa area and the hightest Fe concentration was detected in munkyung area. It means that the water quality is closly related to geological features.
-
The clay found in the river or in any waste water treatment plant usually have a very high content of water. A large amount of sediments hinder the navigation in river. In waste water treatment plant, there is requirement of settling the thick sludge. These problems are overcome by using rapid means of sedimentation and settling. This paper focus on how method of Electrokinetic sedimentation can be made faster. Sedimentation using Electrokinetic phenomenon has been discussed with varied voltage applied and effect and dose of coagulant in increasing the process. The experimental test has been carried out at water content that are generally present in the case of river and small canals carrying waste water. This paper also focus on different heavy metals concentration during the process and the power aspects of process. A series of experiment were done to support the proposed theory and how a bubble formation could hinder the purpose of experiment.
-
In order to establish active and effective recycling plans on construction wastes, the study seeks to built unit generation data per construction waste types on each sector, prepare units data on urban construction waste generation and serve as meaningful data on the establishment of policies on construction waste recycling targeting urban regions. The significance of the study is on the establishment of construction waste recycling plan prior to generation, not as complementary measures on construction waste generated.
-
This study conducted a direct shear test to evaluate friction properties on contact surface of waste resources including turban shell, gastropod shell and PET bottle film. The contact surface that was considered for computation of shear strength in contact surface were turban shell/turban shell, gastropod shell/gastropod shell, and PET bottle film/PET bottle film. As a result of test, friction angle was found to be
$16.7^{\circ}$ for contact surface of turban shell/turban shell,$35.4^{\circ}$ for gastropod shell/gastropod shell, and about$11^{\circ}$ for PET bottle film/PET bottle film. Using the results, the author aims to provide a possibility for application of waste resource in the field. -
Long-Term Leaching Characteristics of Arsenic Contaminated Soils Treated by the Stabilization MethodIn order to investigate stabilization effect and sustainability on As-contaminated farmland soils which were affected the abandoned mine site and stabilized by zerovalent iron(ZVI) and industrial by-products, batch-scale and pilot-scale tests were carried out. In batch tests, ZVI and industrial by-products(blast furnace slag, steel refining slag and oyster shell powder) were used in treatment materials to reduce the As leaching. Industrial by-products were mixed with As-contaminated soils, in the ratio of 1%, 3%, 5% and 7% on the weight base of dried soil. The results of batch-scale tests was shown that the reduction of As concentration was observed in all samples and it was expected that ZVI and steel refining slag were more effective than other treatment materials to stabilize As compounds. In pilot-scale tests, columns were filled with untreated soils and treated soils mixed with ZVI and steel refining slag in the same mixing ratio of 3%. Distilled water was discharged into the columns with the velocity of 0.3 pore volume/day. During the test, pH, EC, Eh and As concentration were measured in the regular term(1pore volume). after six months, pilot-scale tests were retested to investigate sustainability of treatment materials. As a result, It was shown that the leachate from control column was continuously released during the test period and its concentration was greater than
$100ug{\cdot}L^{-1}$ which was exceeded the national regulation of water discharged to river or stream ($50ug{\cdot}L^{-1}$ ). On the other hand, soil treated with ZVI and steel refining slag showed that the concentrations of leachate were lower than national regulation of water discharged to river or stream. Therefore it was expected that ZVI and steel refining slag could be applied to the farmland site as the alternative treatment materials. -
Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because its high swelling potential. However, if the bentonite-based grouting is conducted in coastal areas, the salinity of groundwater changes in the mineral fabric of bentontie. In order words, an increase of cation concentration in groundwater leads to a reduction in the diffuse double-layer thickness in the bentonite mineral structure, and thus the volume of bentointe-based grouts will decrease proportional to the salinity of groundwater. In this paper, the effect of salinity (i.e., NaCl 0.5M, 0.25M, and 0.1M) on the change of swelling potential for bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, in case of using addictives such as a silica sand to increase the thermal conductivity of bentonite-based grouts, the possibility of particle segregation has been studied considering the viscosity of grouts and salinity of groundwater.
-
The frost heaving is related with thermal conduction rate and permeability. If the thermal conduction rate can be controlled, it is effective to prevent from frost heaving. If soil mixed with shredded tire which has relatively lower thermal conduction rate than soil, it helps preventing from frost heaving. However, in this case, the shear strength can get weak. In this study, we compared thermal conduction rate of soil and shredded tire, and test uniaxial compression strength of soil which is mixed with shredded tire and cement in different ratio.
-
Recently, the demand of water resources is constantly increasing due to the substantial increase of population, economy, and living standard. However, it is expected that the water resources should undergo serious problems of poor quality of water as well as shortage of water supply in the near future. Additionally, thoughtless groundwater development have caused to dry river and stream. In this study, the effectiveness of dry stream protection plan is evaluated by using 3-D groundwater flow modeling for the study area which is located in Namyangju of Kyoungi Province. Aquifer tests are performed to obtain the input data of the model. To analyze causes of dry stream using modeling results that water balance is analyzed for situations of before and after closing the wells.
-
The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.
-
Laboratory column tests were conducted in this study using
$Cl^-$ tracers on Jumunjin sand to analyze contaminant transport in mixed contaminated soils. Results obtained from clean soils and soils containing residual diesel verified heterogeneous distribution of residual diesel, and clear acceleration of solute movement. In addition, asymmetric breakthrough curves indicated development of immobile region where solute movement becomes stagnant and creates tailing phenomenon. -
This paper concerns optimum design of 2-Arch tunnel. A 2-Arch tunnel adopted in a subway tunnel construction site is considered in this study. A calibrated 3D finite element model was adopted to conduct a parametric study on the lagged distance between left and right tunnel faces. The results of analysis were examined to determine optimum lagged distance for minimizing the interaction between the left and right tunnels. The results indicated that the shotcrete lining stress and the center pillar load are more influenced by the second tunnel excavation than the tunnel deformation. Also shown is that a lagged distance of 20m is sufficient to minimize the interaction between two tunnels. Fundamental mechanism of 2-arch tunnel was also investigated based on the results.
-
The objective of this study is to evaluate the loading capacity of lattice girder according to loading position. 3-point flexible strength tests were performed on three types of lattice girder, such as LG-
$50{\times}20{\times}30$ , LG-$70{\times}20{\times}30$ , and LG-$95{\times}22{\times}32$ , mainly used in Korea. Two types of loading position for each flexible strength test were used to analyze the behavior of load-deformation. In 3-point flexible strength test, the difference of the average of maximum flexible strength according to loading position had the range from 10% to 33%. -
The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. The tunnel outlet was planned to be made after installing slope stabilization system on natural slope there. Generally, the tunnel outlet is made perpendicularly to the slope, but in this case, it had to be made obliquely to the slope for not interrupting flow of river. Because of excavation in condition of natural slope caused to deflecting earth pressure, the outlet couldn't be made. So, artificial ground made with concrete that it was constructed in the outside of tunnel for producing the arching effect which enables to make a outlet. We were planned tunnel excavation was carried out after artificial ground made. Artificial ground made by poor mix concrete of which it was planned that the thickness was at least 3.0m height from outside of tunnel lining and 30cm of height per pouring. Spreading and compaction was planned utilized weight of 15 ton roller machine. In order to access of working truck, slope of artificial ground was designed 1:1.0 and applied 2% slope in upper pert of it for easily drainage of water. In addition to, upper pert of artificial ground was covered with soil, because of impaction of rock fall from upper slope was made minimum. The tunnel excavation of the artificial ground was designed application with special blasting method that it was Super Wedge and control blasting utilized with pre-percussion hole.
-
In this paper, The evaluation of durability of the PC Panel lining for tunnel structure was examined through the rapid test by carbonation and freezing and thawing. Also for the purpose of improvement of durability. Namely, the durable characteristics of PC Panel lining by carbonation and freezing and thawing, was evaluated by rapid test and long-term field exposure test and main influence factors were derived. As a result of test, Correlation of accelerating test in deterioration chamber and long-term field exposure test, it will be expected that the proposed correlation well to the prediction of life expectancy of structure and is contributed greatly in the future.
-
In this paper, result of whole test, When the Transfer Distance is increasing, Strength of Backfilling Material of NATM Composite lining Tunnel due to increasing Gravity was increased, but that is higher the Air Flotation than increasing Strength. So, That was predicted a drop of Permeability. And Performing the placing Lightweight Foamed Mortar, we think that it's performance in drain material was lost. Therefore We conclude that Proper Transfer Distance that taking Permeability through minimizing of Air Flotation Loss and getting the Need Strength is 50m.
-
A new grouting material named 3S is developed that can be used effectively for reinforcing cut surface of weathered rock in processing of tunneling. The new material is composed of mostly micro slag cement and general Portland cement, but the material is foundered again upto
$8,000\;cm^2/g$ of specific area so that it can be easily infiltrated in to the ground. For verifying technical and engineering quality of the material several laboratory tests with specially designed test apparatus were performed including compression tests, infiltration tests and resonant column tests. It was verified that the newly developed grouting material at early age of 1 or 3 days generates 200~1500% higher compressive strength and 400~560% larger elastic modulus than those of the LW(LW-1) or micro-cement(LW-2) grouting materials in the market. In addition, the new 3S grouting material could be so easily infiltrated into the model ground in the lab tests that it produces 4 times larger grouted roots in average compared to the usual water glass type grouting material(LW-1). Thus, it can be said that the newly developed grouting material can effectively prevent inflow water into tunnel compared to LW grouting materials. -
Subsea tunnels that link land to island and among nations for transportation, efficient development of limited surface and pursuit of economic development should be designed to support pore water pressure on the lining. It is generally constructed in the bed rock of the sea bottom. When the tunnel excavation face meets fractured-zones below sea bottom, collapse may occur due to an increase of pore water pressure and large inflow. Such an example can be found in the Norwegian subsea tunnel experiences in 1980's. In this study hydraulic behavior of tunnel heading is investigated using numerical method based on the collapse of Norwegian subsea tunnel. The effect of pore water pressure and inflow rate were mainly concerned. Horse-shoe shaped model tunnel which has 50 m depth from the sea bottom is considered. To evaluate hydraulic performance, parametric study was carried out for varying relative permeability. It is revealed that pore water pressure has increased with an increase of sea depth. Especially, at the fractured-zone, pore water pressure on the lining has increased significantly. Inflow rate into tunnel has also increased correspondingly with an increase in sea depth. S-shaped characteristic relation between relative permeability and normalized pore water pressure was obtained.
-
In this study, performance Assesment of the existing tunnel drain and higher permeable for the In-plane Test. Two separate simulation tests from geotexitile and Lightweight Foamed Mortar compare. perfomed:the one is the in-plane test and the other is the clogging phenomenon test. As a result, NATM Composite used to Ligheweight Foamed Mortar pemability 80%, more than existing tunnel drain. Also, clogging phenomenon test do low assesment more than existing tunnel drain geotextile.
-
산업사회의 발전에 따라 사회 기반시설분야도 복잡다양해지고 특히 도시기능이 활발해지면서 지금의 도심지에는 지하철, 상수도, 하수도, 전력구, 통신구, 지하보차도, 지하상가, 지하주차장 등 여러 가지 용도의 지하공간이 요구되고 있으며, 이러한 지하 구조물을 축조하는데 있어 도로상에 차량 증가로 인한 교통 혼잡이나, 지하매설물의 장애로 인하여 기존의 개착식 공법으로 시행하지 못하고 지하터널공사로 시행하는 경우가 빈번하다. 기존 국내 외 터널공법 관련문헌과 현재 사용되는 터널공법의 실제 시공에 관한 정보를 수집하여 장 단점, 시공시 주의사항, 적용조건등의 조사내용을 바탕으로 RPS 공법을 고안하였다. 소규모 지하구조물을 구축하기 위한 RPS 공법은 출발갱내에서 상부에 파이프 루프를 시공한 후 광폭 유압 패널이 장착된 철제 선도관을 추진시켜 선도관을 원압잭에 의하여 압입한 후 P.C. 콘크리트 구조물을 거치하고 원압으로 압입 추진토록 하였다. 또한, 대규모 지하구조물 축조시에는 구조물 예정상단부에 지반조건에 따라 파이프 루프공법 또는 소구경 Semi-Shield 공법을 이용하여 루프를 시공함으로써 상부의 침하를 방지하고, 측벽은 광폭유압 패널을 이용하여 여굴의 최소화 및 곡선부 시공을 용이하게 하였다.
-
지오텍스타일 튜브의 봉합거동에 대한 이론연구와 실험을 수행하여 효율적인 봉합구조와 합리적인 설계 강도의 결정을 위한 방안을 고찰하였다. 수행 실험은 지오텍스타일 튜브 제품을 형성하기 위해 사용되는 봉합사에 대한 해수조건을 고려하여 내구성 평가와 봉합강도를 개선시키기 위해 다양한 봉합형태에 따른 봉합강도를 평가하여 고찰하였다. 지오텍스타일 튜브의 장기설계강도의 결정에서 지오텍스타일 자체의 강도 감소인자 뿐 아니라 봉합부에서의 여러 감소인자들을 고려하여야 하며 정확히 평가할 수 있는 시험규격의 정립이 요구된다. 봉합사의 강도가 유사한 경우 봉합형태가 봉합강도에 주요한 영향을 미치며, 봉합사의 봉합 후 긴장상태도 실험 중에 영향을 미치는 것으로 확인되었다.
-
지오그리드란 토목합성보강재의 한 종류이며, 지반의 보강 처리를 위해 주로 사용된다. 본 연구에서는 유한 요소해석프로그램에 의한 지오그리드의 접점강도, 응력분산효과해석과 광폭인장강도 평가 개선을 위한 방법에 관한 연구를 주목적으로 하였다. 이 때 범용 유한요소 해석 프로그램인 VisualFEA/Edu를 사용하였으며, 실제 실험값과 프로그램의 결과 값의 비교를 통하여 해석모델의 타당성을 검증하였다.
-
A series of three-dimensional numerical modelling have been conducted to clarify the behaviour of multi-pressurised soil nails with high strength steel pipes. In this study, the soil non-linearity, the soil-nail interaction and staged construction are considered. It has been found that pressurised soil nails can reduce lateral ground movement by 14-21% compared to general soil nails with very low pressure. In addition, ground settlement was reduced when using multi-pressurised soil nails. The pressurised soil nail may result in an increase in the surcharge loading on the ground surface.
-
The purpose of this research is to assess the application of recycled-aggregate that is gained from construction wastes as the material of compaction pile method. At the same time, the development of the new technique rectifies defects of the existing compaction pile method for soft ground improvement. In this research, model tests were conducted for analyzing the effect of the soft ground improvement by porous concrete pile using recycled aggregate. Through the results of the model tests, the behavior of settlement on composition ground with surcharge pressure were elucidated.
-
Jeju-do is a island formed by the volcanic activity and has more than 360 volcanic cones distributed widely along the long axis of the elliptically shaped island. The volcanic cones consist mainly of scoria, so called "Song-I" in the local dialect. In this study the chemical and soil mechanical properties of scoria being very different from those of the inland were investigated with the various tests. In the sieve-passing test the particle size of scoria had more than 10 of uniformity coefficient and gradation coefficient of 1 ~ 3, showing relatively homogenous distribution. Based on the uniformity classification, scoria was assorted into GW. In the large scale direct shear tested for measuring the mechanical strength of scoria the internal friction angle of red scoria was
$37^{\circ}$ and that of black scoria was$36^{\circ}$ . This indicated that there was no difference in the mechanical strength between two types of scoria. On the other hand, red and black scoria had$1.24{\times}10^{-3}$ to$3.55{\times}10^{-2}$ cm/sec of k values for the static water level permeability, thus being classified into a coarse or fine sand as compared with that representing the saturated soil. They also had 1.411 to$1.477\;g/cm^3$ of notably low$r_{dmax}$ values for the compaction test as compared with common soil, which was considered to be due to their low specific gravity and high porosity. In conclusion, the soil mechanic properties of scoria obtained from this study are thought to be very helpful for reducing lots of trial and error happening in the civil engineering construction. -
This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 2-D finite element analysis, ANSYS, was employed to evaluate the temperature distribution on the borehole cross section involving HDPE pipe/grout/soil formation to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system which is equipped with a thermally insulating latice in order to reduce thermal interference between the inflow and outflow pipes. In addition, a 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of grout's thermal properties, rate of circulation pump, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.
-
The characteristics of arsenic(As) contamination were investigated on soils of 3 abandoned metal mine sites in Gangwon-do, Korea. Total forty nine soils were sampled to conduct standard methods(extraction by 1HCl), sequential extraction and column leaching test. Concentration of As extracted by 1N HCl was ordered as follows: A mine > B mine > C mine, and the concentration of arsenic in the soils of A mine was significantly greater than that at any other cases and all samples of A mine were exceeded the national regulation of
$6mg \;kg^{-1}$ . In the results of sequential extraction, the potential contamination risk for groundwater and plants was ordered as follows: C mine > B mine > A mine because the C mine showed the relatively greater mobility and bioavailability of fraction than any other mines. And, in colume test, concentration of As was ordered as follows: C mine > B mine > A mine, and it was expected that these results were connected with fraction characteristics of the mine sites. Therefore adequate leaching investigations should be used to simulate the effect of natural leaching conditions, and to predict both the potential mobility of metals to groundwater and their bioavailability to plants under natural conditions. -
In order to investigate the applicability and suitability of the industrial by-products to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter(
$2m{\times}6m{\times}1.2m$ ) which were constructed with cement brick, and then, volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to February, 2008. As a result, the case containing the mixture of bottom ash and loamy soil was most effective in engineering and hydrological properties and water retention ability. -
In this study, it collected and analyzed a construction case of the improved top-down support system application field on a case by case retaining wall method. The behavior of horizontal displacement was analyzed according to retaining wall type after reviewing a design stage and estimated horizontal displacement under the construction. The study results showed that it is judged stable until excavation termination irrelevant to a retaining wall method at the improved top-down support system application. It is judged that the settlement of behind ground can minimize because the retaining wall head displacement also behave stably. It was compared the predicted horizontal displacement in design and the measured horizontal displacement acquired through a measurement by using Elasto-Plastic analysis program. The comparison results showed that a similar horizontal displacement was predicted within stability standard irrelevant to a retaining wall method. So, it is decided that the advanced prediction is reasonable by Elasto-Plastic analysis in design applied the improved top-down support system. In the case of the ground anchor method application under a same condition, it is decided that a horizontal displacement will more increase than the improved top-down support system is applied. If a section condition is same, it was decided that to apply top-down support system is more stable than that.
-
A method of construction with a basis treatment that uses a latticed bamboo mat puts bamboo's peculiarity and bamboo mat's bending substance to use, and a latticed bamboo mat equally distributes to embankment loading in a basis ground. Therefore it prevents ground destruction by an ill-balanced load and an irregular ground subsidence, and it makes safety system. This investigation make progress a soil box model by a dredged reclamation ground of west and south sea at domestic area, and make a comparative study and analyze the strengthening effect based on a grid size of a bamboo-mat and ground failure that it will use in the field.
-
In this study, dredging reclamation ground were performed to evaluate the ground improvement and liquefaction reduction effect with the result that standard penetration test(SPT) and piezo penetration test(CPT) before and after of improvement. Especially, the estimate center of the pile and factor of liquefaction safety to the position of ground around with the pile presented improvement of compaction for improved compaction of dredging reclamation ground.
-
In this research, these days extension of electric power station plant and new building plan is tending to more bigger size and much more cooling water for discharge, therefore submarine structure for discharge has needed various types and the large one. The domestic power plant was applied to once-through CW system structure that pipe line type, immersed PC-box culvert type and submarine headrace tunnel type of discharge structure. It is possible that the future structure type of submarine discharge is expected by a case research of application and plan.
-
It is of importance to determine the zero effective stress void ratio(
$e_{00}$ ), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail. -
Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/
$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory. -
Performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area has been conducted. From field monitoring results, excessive ground settlement compared to predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation was occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared to field monitoring results after additional surcharge was applied.
-
Vibration triaxial compression test was put in influence for liquefaction strength of fine grained soil of dredged and reclaimed ground and consideration for fine fraction content, relative density, overconsolidation ratio and plasticity index in this study. By the results of these test, the liquefaction strength increased with fine fraction content and the relative density, overconsolidation ratio incresed with liquefaction strength too. However, in the case of nonplastic silt was the smalist liquefaction strength which influenced by dilatancy and interlocking when silt content was 34.7%(average grading 0.12mm). Therefore, liquefaction strength of fine grained soil of dredged and reclaimed ground increased with fine fraction content so it will help to make lower liquefaction.
-
After the final closure of sea dyke, seepage behaviour of embankment is highly changed by variation of water head different between tide wave and controlled water level at fresh lake. Especially, the seepage behaviour of bottom protection layer of final closure section is more important factor for structural and functional stability of sea dyke, because of the bottom protection layer of final closure section is penetrated sea side to fresh lake. Even though bottom protection layer was filled with dredged fine sand, it has a high permeability. In this paper, mainly described about the seepage velocity and borehole image of bottom protection layer filled with dredged sand after final closure. Various in-situ tests such as BIPS (Borehole Image Processing System) and ABI (Acoustic Borehole Imager) survey, wave velocity measuring, and color tracer survey were conducted to evaluate the seepage behavior of bottom protection layer. Based on the in-situ tests, the bottom protection layer of final closure section was almost filled with dredged sand which is slightly coarse grain sand and there have sea water flow by water head different between tide wave and controlled water level at fresh lake. Also, comply with tracer survey results, the sea water flow path was not exist or generated in the bottom protection layer. However, because of this result not only short term survey but also just one test borehole survey results, additional long term and other borehole tests are needed.