Proceedings of the Korean Geotechical Society Conference (한국지반공학회:학술대회논문집)
- 기타
2001.03a
-
This study introduces the framework of the mutual recognition project of APEC Engineer and also tries to find out what we, Korean engineers have to do with this project. The mutual recognition framework consists of 2 main frameworks ; the substantial equivalence framework and the mutual exemption framework. The participating Economies have discussed and agreed on the framework of the substantial equivalency and have been producing APEC Engineers from the 1st, Nov 2000 based on this agreement. However, more discussions will be required from now on in order to finalize the mutual exemption agreement, even though there have been a lot of discussions including the workshop for the regulatory authority for the last 5 years. Here we have to study and find out what we have to do with this project and prepare for the bilateral agreements and the Coordinating Committee meeting to be held in Hongkong in Oct this year.
-
Shin, Hee-Soon;Kim, Jung-Yul;Lee, Byung-Joo;Han, Kong-Chang;Sunwoo, Choon;Song, Won-Kyung;Synn, Joong-Ho;Kim, Yoo-Sung;Park, Chan 17
Several underground cavities were found during construction of a road tunnel in 600m length . The area belong to Whasoon coalfield where extensive ground subsidences have occurred. It is necessary to find other underground cavities which might be located just near the road tunnel for safety, The field surveys and laboratory tests were conducted such as surface geological survey(672m), surface reflection seismic exploration(399m), drilling test(3 NX holes), 9 laboratory tests for rocks, 3 boreholes televiewer tests, reflection seismic exploration in tunnel(2, 342m). To estimate the effects of underground cavities on the road tunnel, 3 geological section were analysed with FLAC-2D modeling. The effects of the ground reinforcement were also analysed. -
Doosan Construction & Engineering Co., Ltd is building a railway tunnel beneath the Soo-Young River connecting MinLak Station and Centum City Station, a section 230, subway line 2, Pusan City, Korea. When completed the tunnel will have a finished inner diameter of 6.5m(21.311) throughout its total length of 840m(420m = 0.52 miles, Two Single Track Tunnel : 420m+420m). The ground profile of the face toward shield machine is composed of multi layers, silty clay, clayey gravel, soft rock etc. This research paper is to predict ground deformation and variation of stresses around tunnel using Hyperbolic model, and to reflect the works on the next shield tunneling project. And this research paper is analyzed data of measuring instrument (such as settlement gauge, inclinometer, Multiple extensometer, etc.) which is installed along tunnel line for safety of tunnel. For calculations, the finite difference Method is applied. Backfill grouting material is supposed to have instantly strength of 10kg/
$\textrm{cm}^2$ above, although its strength is available after 24 hours passed. -
In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.
-
In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.
-
The techniques to make assessment of the structural integrity of underground structures include Infrared thermagraphy, GPR using the reflection of the electromagnetic wave, ultrasonic test, seismic methods using the propagation of elastic wave, and etc These methods have pros and cons in the assessment of the structural integrity in the complex environment of the underground structure, so that a single method alone is not enough to evaluate parameters required for the assessment. In this study, a new seismic method was proposed to improve the existing methods and to provide an additional information like stiffness of concrete. The proposed method combines the advantages of the modified impact-echo test and the SASW method. To verify the validity of the proposed method, a large scale model of a tunnel concrete liner was built and the proposed method was applied to the center of the model and also to the corner of the model which has several distinct reflection boundaries.
-
암석-콘크리트 불연속면의 전단변형 및 파괴특성을 규명하기 위해 상부 재료를 콘크리트로, 하부 재료를 암석으로 하는 규칙.불규칙 톱니형 시료와 인공 절리시료를 제작하여 실험실 직접전단시험을 실시하였다. 전단과정 동안 하중과 변위 외에 미소파괴음의 계수와 에너지를 측정하여 전단과정의 단계별 특징을 규명하였고 미소파괴음 음원추적을 실시하여 불연속면에서의 거칠기 파괴부분의 변화를 고찰하였다. 또한 암석 불연속면과 암석-콘크리트 불연속면의 거동을 비교하고 거칠기의 불규칙성 증가에 따른 전단거동의 변화를 관찰하였다.
-
Since Pyoungtaek thermal power plant began using natural gas in 1986, the annual using volume has rapidly increased and reached 12.7 million tons in 1999. When the natural gas is cooled to a temperature of approximately -162
$^{\circ}$ C at atmospheric pressure, it condenses to a liquid called liquefied natural gas(LNG). LNG has a special characters such as odorless, colorless, non-corrosive, and non-toxic. So, LNG storage tank, tanker ship, transfer pipelines are required the special storage and transportation systems and technology. The presently operating LNG terminals are Pyongtaek and Inchon terminals. A total of 19 above-ground LNG storage tanks(100 thousand ㎘ grade) are currently in operation with a sendout capacity of 4,360tons/hour. To meet the growing domestic demand of LNG supply, the Inchon receiving terminal is expanding(six in-ground tank) and constructing a third LNG terminal at Tongyong. In this paper, case study on seepage analysis and countermeasure against increasing the seepage volume of in-ground LNG storage tank excavation work is reported. The results of an additional seepage analysis are presented to verify the design seepage volume of assumption section and seepage volume after curtain-grouting in the slurry wall. -
The shear strength of jointed rock is influenced by effective normal stress, joint wall compressive strength, joint roughness and so on. Since joint roughness makes considerable influences on shear strength of jointed rock, many studies tried to get quantitative joint roughness parameter. Until now, Joint Roughness Coefficient, JRC proposed by Barton has been prevalently used as a rock joint roughness parameter In spite of its disadvantages. In this study, a quantification of rock joint roughness is performed using surface roughness parameter, Rs. Proposed method is applied to rock core specimens, field joint surfaces, and JRC profiles. The scale of fluctuation is introduced to extend the suggested method to the large scale field joint surface roughness. Based on the quantification of joint surface roughness, joint shear tests are performed with the portable shear box. The relationship between joint surface roughness and joint shear strength is investigated and finally, a rock joint shear strength equation is derived from these results. The equation has considerable credibility and originality in that it is obtained from laboratory tests and expressed with quantified parameter.
-
Electrical resistivity is one of physical property of the earth and measured by electrical resistivity survey, electrical resistivity logging and laboratory test. Recently, electrical resistivity is widely used in determination of rock quality in road and railway tunnel design. To get more reliable rock quality data from electrical resistivity, it needs a lot of test and study on correlation of resistivity and rock quality. Firstly, we did rock property test in laboratory, such as uniaxial compressive strength(UCS), p wave velocity, Young's modulus and electrical resistivity. We correlate each test results and we found out that electrical resistivity has exponentially related to UCS and P wave velocity and linearly related to Young's modulus. And we accomplished electrical resistivity survey in field site and carried out electrical resistivity logging at in-situ area. Also we peformed rock classification, such as RQD, RMR and Q-system and we correlate electrical resistivity to rock classification results. We found out that electrical resistivity logging data are highly correlate to RQD, Q and RMR. Also we found out that electrical resistivity survey data are lower than electrical resistivity logging data when there are faults or fractures. And it cause electrical resistivity survey data to lowly correlate to RQD, Q and RMR.
-
A concrete lining of NATM tunnel is the final product of a process that involves planning and evaluation of user needs, geotechnical investigations, analysis of ground-lining interaction, construction, and observations and modifications during construction. The designer must consider the lining in context of the many function, construction, and geotechnical requirements. Also, the loss of supporting capacity of shotcrete lining due to poor rock qualities and shotcrete erosion must be considered. The values, shapes, and estimating methods of rock load and water pressure are very different with every designers. Estimating methods of rock loads used in the design of NATM tunnel concrete lining are investigated. Numerical analyses are done in various conditions. And the rock loads estimated from radial stress and plastic zone are compared respectively.
-
The magnitude and the orientation of in-situ stresses contribute to ground displacement and stresses in the field of underground space. This paper investigates in-situ stresses at various depth on the basis of 392 data which were determined by over-coring and hydro-fracturing test methods in the Korea peninsula. The result shows that in-situ stress distribution are more or less non-uniform through the Granite and Gneiss sub-area, and that the K-value in the Volcanic sub-area are below 1 at the deep depth. Also, the result of three dimensional numerical analyses of tunnel shows that the direction and magnitude of displacement around tunnel are much effected by the stress difference between the maximum and the minimum horizontal stress.
-
The purpose of this study is to assess the stability of tunnel for a high speed railway crossing the fault zone. The area where the tunnel crossed the fault zone can be unstable during construction and operation. Geotechnical investigations have been conducted to determine an optimum excavation method by obtaining the material properties around the fault zone and to check the stability of the tunnel. For the numerical analysis, the FLAC, numerical analysis code based on finite difference method, was utilized to analyze the behavior of the fault at three points having typical ground conditions. Based on the results of numerical analysis, the combinations of compaction grouting and LW grouting were determined as suitable methods for pre-excavation Improvement of the ground surrounding the tunnel opening. In conclusion, the stability of the tunnel construction for the high speed railway within the fault zone may be obtained by adopting the optimum excavation method and the reinforcement method. The numerical analysis based on FLAC program contains errors caused by assumptions used in numerical analysis, therefore constant monitoring with respect to the change of ground condition and groundwater is highly recommended to minimize the numerical error and the possibility of damage to tunnel.
-
A frame slab method has been proved as a possible and profitable construction solution for the urban tunnels with very shallow overburden and the excavation from the surface Is strictly limited. Since this method allows only a small amount of construction activities in the ground surface, the disturbances to the public and the surface traffic can be drastically reduced compared with the ordinary cut-and-cover method. The construction sequences of the method and the some of critical cautions needed are described in detail. Also a comprehensive numerical analysis including 2-D and 3-D analysis have been performed to verify the stability of the ground during the construction. It is revealed from this study that the frame slab method can be a quite successful solution for the shallow overburden tunnelling in urban area.
-
This is a case study of stability analysis and reinforcement design for the tunnel where the collapse of the entrance slops occured along the fault zone developed in the bed rock. According to the site investigation, the main factor of sliding is the influence of fault gouge and heavy rainfall. Considering the in-situ condition, the versatile reinforcement methods is needed, and so the close investigation on the site area was accompanied with the stability analysis of tunnel and slops. The FRP(Fiberglass reinforced plastic) grouting method improved the defect of Steel Umbrella Arch Method, such as oxidation, low work efficiency, the material's heavy weight, is adapted as the reinforcement methods.
-
Blasting method is used most engineering works for rock excavation. Blasting method is done much to upgrade of operation efficiency, contraction of construction period than other method. But blasting method happens damage by blasting vibration, nose and scattering. Therefore this study examined about effect, characteristic and application of Plasma method. To confirm effect measured vibration, noise and frequency, and analyzed data compare with general blasting.
-
Undrained triaxial tests were peformed for a weathered soil, which includes local measurement using LVDT The behavior from small In large strain conditions could be evaluated consistently through a triaxial test, The stress-strain relationship of undisturbed samples were compared with the disturbed and the shear moduli in the small strain level had the almost same values. Especially the shear moduli were mostly affected by the initial condition of water contents. An anisotropic hardening model based on the total stress concept could predict the stress-strain relationship accurately, which makes it possible to analyze the geotechnical problem reasonably for the weathered soil.
-
This study investigated one-dimensional vertical infiltration to an unsaturated residual soil by numerical solutions, FDM. In order to estimate the parameters needed for numerical analysis, tire soil-water characteristic curve(SWCC) of Shinnae-dong soil, one of the most typical residual soils in Korea, were experimentally obtained. Then, the statistical analysis for obtaining the SWCC was performed. The numerical solution to the linearized governing equation for unsaturated groundwater flow provides the infiltration characteristics for the unsaturated residual soil represented by transient pressure profiles and water contents profiles.
-
피에조콘관입시험(PCPT)의 소산시험은 in-situ 상태의 압밀계수(c/sub v/)를 추정하는 방법으로 널리 이용되어왔다. 본 연구에서는 spherical cavity expansion theory 및 axisymmetric uncoupled linear consolidation equation(Gupta & Davidson, 1986)을 이용하여 과압밀점토에서의 초기과잉간극수압의 분포 및 과잉간극수압의 시간에 대한 소산현상을 해석하는 수치해석방법을 제안하여 현장시험결과 및 실내시험결과와 비교 분석하였다. ADIS (alternating direction implicit scheme)를 이용한 FDM 해석을 실시한 결과와 현장시험의 소산곡선은 잘 부합되는 것으로 나타났으며 압밀계수도 실내실험 또는 피에조콘관입 시험에 대한 추정방법으로 산출된 값과 비교적 일치하는 것으로 나타났다.
-
Overconsolidated clays have a different stress history according to the deposit environment. The stress history is classified into (i) rotation angle of stress path, (ii) overconsolidation ratio, and (iii) magnitude of length of recent stress path. Stress-strain behaviour of overconsolidated clays strongly depends on these stress history. In this study a series of drained stress path tests were carried out. Test results indicated that stress-strain behaviour of overconsolidated clay(focused on strain rate) depends on OCR and length of recent stress path, especially rotation angle.
-
Reflection method using ultrasonic source has been attempted to obtain the information about tunnel lining structures composed of lining, shotcrete, water barrier and voids at the back of lining. In this work, two different types of sources, i.e. single-pulse source and sweep source, can be used. Single-pulse source with short time duration has the frequency content whose amplitudes tend to be concentrated around the dominant frequency, whereas sweep source with long time duration denotes a flat distribution of relatively larger amplitude over a broad frequency band, although the peak to peak amplitude of single-pulse source wavelet is equivalent to that of sweep source one. In traditional seismic application, a single-pulse source(weight drop, dynamite) is typically used. However, to investigate the fine structure, as it is the case in the tunnel lining structure, the sweep wavelet can be also a desirable source waveform primarily due to the higher energy over a broad frequency band. For the investigation purposes of sweep source, a physical modeling is a useful tool, especially to study problems of wave propagation in the fine layered media. The main purpose of this work was using a physical modeling technique to explore the applicability of sweep source to the delineation of inner layer boundaries. To this end, a two-dimensional physical model analogous to the lining structure was built and a special ultrasonic sweep source was devised. The measurements were carried out in the sweep frequency range 10 ∼ 60 KHz, as peformed in the regular reflection survey(e.g. roll-along technique). The measured data were further rearranged with a proper software (cross-correlation). The resulting seismograms(raw data) showed quitely similar features to those from a single-pulse source, in which high frequency content of reflection events could be considerably emphasized, as expected. The data were further processed by using a regular data processing system "FOCUS" and the results(stack section) were well associated with the known model structure. In this context, it is worthy to note that in view of measuring condition the sweep source would be applied to benefit the penetration of high frequency energy into the media and to enhance the resolution of reflection events.
-
The PMT test results are compared with other in situ test such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), Field Vane Test (FVT) and the laboratory test in order to investigate the correlationships for the strength parameters obtained from Busan and Incheon areas. Many proposed correlation formulas also make a comparative study and new correlation formulas for domestic soils are introduced. Limit pressure (
$P_1$ ) could be determined by P-log($\Delta$ V/V) and Relative volume Method. PMT for the granular soils showed relatively high correlation with SPT, while CPT has good correlation with PMT for cohesive soil. The predicted undrained shear test ($S_{u}$ ) by the PMT test results for Incheon and Busan samples showed low correlativity with proposed equations, therefore, new correlation formulas are proposed for domestic soils.s. -
There are complicated and big shear zone which is about several tens meter in the middle of the cutting slope in this study area. And slope stability analysis is very hard because many fault zones are gathered in the shear zone. This study furnish imformations of scrutinized geological survey, numerical stability analysis, reinforcement work analysis and computation of ground mass properties. Then this offer rational slope stability analysis, rock mass decision and counterplan.
-
Present status of railroad slopes through the field investigation in 26 selected slopes and/or rockfall at risk was grasped. From the evaluation of field data, main characteristics of railroad slopes are that 1) the possibility of failure by rockfall is high, 2) the Possibility of failure by slope itself is low and 3) rockfall's risk at the in and out part of tunnel is especially high. To maintain the railroad slopes systematically and reasonably, it is necessary to make and to use the database of slopes information along the railroad. Furthermore, through the construction of basic slopes' information, maintenance system of railroad slopes was developed in connection with IR-DiPS(Intelligent Railroad - Disaster Prevention System) in the future.
-
Landslides generally occur due to influences of the internal and external factors. Internal factors include ground characteristics, terrain and so on. External factors can also be divided into natural factors such as rainfall, ground water, earthquake and so on, and artificial factors resulting from cutting and embankments. Among these factors, rainfall becomes the most important external factors by means of which landslides occur in Korea. To appropriately deal with tile effects of pore water pressures due to rainfall, the method using the pore water pressure ratio(r
$\_$ u/) is generally applied in slope stability analysis or the design of slope reinforcements. Since tire value of r,, is in general not constant over the whole cross section, in most slope stability analyses the average values are used with little loss in accuracy. However, determination of the average values of r$\_$ u/ to applied in the design is difficult problem. Therefore, in this study, tile average values of r$\_$ u/ according to the intensity of rainfall and slope inclination is suggested based on results of the small scaled model tests using the artificial rainfall apparatus. It is found from the model tests that the average values of r$\_$ u/ is about 0.07∼0.18(in case of the intensity of rainfall is 50mm/hr.), about 0.10∼0.28(in case of the intensity of rainfall is 100mm/hr.), and about 0.10∼0.33(in case of the intensity of rainfall is 150mm/hr.). -
응력-변형률 관계의 모델링에 있어서 creep, stress relaxation, strain rate effect 등의 묘사는 중요한 지반거동중의 하나인 시간 의존적 거동에 대한 simulation은 있어서 대단히 중요한 요소라 할 수 있다. 특히 지반은 변형률 속도에 대하여 때로는 매우 다른 거동 특성을 보이기 때문에 지반의 모델링에 있어서 변형율 속도를 고려한 구성방정식의 제시는 큰 비중을 차지한다 하겠다. 본 연구에서는 변형율에 따라 변화하는 지반의 거동특성을 보다 현실에 가갈게 묘사하기 위한 시간 의존적 구성모델을 제시하는데 있다. Bounding Surface Model의 Stress Invariant 부분을 Perzyna(1966)와 Adachi and Oka(1982)의 변형율 속도 의존적인 구성관계 이론을 이용하여 발전시켰다 제안된 구성모델은 다양한 변형율 속도에 적용에 있어서 기존의 방식보다 간단히 모델 정수들을 결정 할 수 있다. 지반거동의 수치적인 해석을 위하여 기존의 Bounding Surface Model에 사용되었던 Program Code를 발전 시켜 사용하였으며, 엄격히 시행된 실내시험의 결과와 비교/검증하였다.
-
Uncertainty study of shear strength characteristics of the marine clays was carried out based ell In-situ tests and laboratory tests on tile south-east coastal region of the Korean peninsula. Theoretical analyses were studied using both tile spherical cavity expansion theory in finite soil mass and the strain path method to determine tile cone factor using the undrained shear strengths obtained by in-situ tests, and the empirical methods in accordance with the ultimate resistance theory were also discussed. Analysis show that the empirical methods suggest more reasonable value than that of theoretical methods in terms of comparing the cone factor estimated using linear regression and frequency distribution analyses. The cone factors obtained by the empirical methods are 18, 15, and 6 respectively, from the results of total cone resistance, effective cone resistance, and excess porewater cone resistance method, and the estimated were similar to those of previous researcher's.
-
Nine different types of the reinforced railroad roadbeds which . are located in between Suwon-Chunan station of Kyongbu line were constructed in order to increase the bearing capacity of railroad roadbed and to improve the ridability as a part of speed-up project of conventional railroad systems. Each three sections were composed of weathered granite soil, crushed stone and furnace slag(HMS25), and fully instrumented with earth pressure cells, settlement plates and geophones to monitor the behavior of roadbeds under actual train loads. Field measurement has continued since October 31, 2000 and presently with rather longer measurement interval. The measurement data such as settlement, earth pressure and vibration levels are currently under analysis process. In this paper, only cumulative measurement data of railroad roadbeds were introduced. In the near future, comprehensive measurement data and result of analysis will be presented and design technique for the reinforced railroad roadbed will be proposed as a final product of this study.
-
To investigate the underground structure of shallow water, Han-river near Yangsou-Ri, high resolution hydroacoustic measurements were carried out for the engineering design of railroad bridge. The acoustic source was a Boomer with an energy of 90 to 280J and in a frequency range up to about 16KHz. The reflected signals were received by using both traditional hydrophones(passive element) and a specially devised receiver unit(active element) mainly composed of piezofilms and preamplifier. They are connected to the "SUMMIT" data acquisition system(DMT-GeoTec company), where the sampling interval was set to 1/32㎳. The source position was continuously monitored by a precision DGPS system whose positioning accuracy was on the order of loom. For the quality control purposes, two different source-receiver geometries were taken. That is to say, the measurements were repeated along the profile everytime depending on the different source energy(175J, 280J), the receiving elements(passive, active) and two different source-receiver geometries. It was shown that the data resolution derived from a proper arrangement with the active hydrophone could be greatly enhanced and hence the corresponding profile section caused by the regular data processing system "FOCUS" accounted excellently for the underground formation below the shallow water.w the shallow water.
-
Natural clayey soils or improved grounds are in a overconsolidated conditions due to changes in vertical stress and pore pressures, desiccation, ageing and so on. These grounds show inelastic stress-strain behaviour characteristics within all range of strain except very small strain (
${\gamma}$ $\_$ s/$\leq$ 10 ̄$^3$ ∼10 ̄$^4$ %) when construction, such as excavations and retaining walls, is performed. Also it strongly depends on loading rate of current stress path and recent stress path. This study carried out drained stress path tests by varying loading rate of current and recent stress path. Test results indicated that stress-strain behaviour of overconsolidated clay depends on loading rate, especially loading rate of current stress path. -
During the core drilling for the design of a railway bridge crossing over the inferred fault system along the river, fracture zone, extends vertically more than the bottom of borehole, filled with fault gouge was found. The safety of bridge could be threatened by the excessive subsidence or the reduced bearing capacity of bedrock, if a fault would be developed under or around the pier foundation. Thus, a close examination of the fault was required to rearrange pier locations away from the fault or to select a reinforcement method if necessary. Geophysical methods, seismic reflection method and electrical resistivity survey over the water covered area, were applied to delineate the weak zone associated with the fault system. The results of geophysical survey clearly showed a number of faults extending vertically more than 50m. Reinforcement was not desirable because of the high cost and the water contamination, etc. The pier locations were thus rearranged based on the results of geophysical surveys to avoid the undesirable situations, and additional core drillings on the rearranged pier locations were carried out. The bedrock conditions at the additional drilling sites turned out to be acceptable for the construction of piers.
-
Optical Color Corescanner firstly developed by DMT-GeoTec, Germany and further upgraded through the Korea-Germany joint project is capable of duplicating the core surfaces. The tool uses a digital CCD line camera. As the core is rotated by an electric motor, the camera scans the uppermost line, everytime with a circumferential increment of up to 0.05mm(20pixels/mm) and hence a complete 360
$^{\circ}$ unwrapped image(core image) is produced. This paper illustrated diverse research benefits of such core images from several test sites in our country. All scanned images could be stored as a data-base one and easily used with software facilities \circled1 to evaluate a percental distribution of mineral components or grain size etc. not only for the rock classification but also for e.g. the assessment of building stones, \circled2 to study potential reservoirs as a hydrocarbon indicator using ultraviolet fluorescence reflection from cores, \circled3 to facilitate the qualitative and quantitative analysis of fractures, \circled4 to evaluate the fractures and thin bedded reservoirs using spectral color responses. Based on abundant scanning experiments, it would seem that this imaging work should lead to reflecting the future trend in underground survey toward a more comprehensive understanding of the properties and behaviors of in situ rocks. -
This study presents the slope stability analysis results for the model slope test. The model slope was made of the soil reinforced by FPF(Fibrillated Polyprophylene Fiber). The shear strength properties of the soil reinforced by FPF fibers were evaluated through the direct shear tests. The model slope 1:1 and 1:1.5 were made and the load tests were performed. Back analysis using limit equilibrium method was carried out to evaluate the shear strength increase on the FPF reinforced slope. The factor of safety of the FPF reinforce slope increased about 23% over unreinforced slope.
-
Excavation in a big city is different from excavation in a local area because construction methods and stability are directly connected in a loss of life. Especially, estimate of rock mass slope stability is excuted by more detail and safty work. In this study, we are made reserches in rock mass slope stability and safety method that the slope is closed by elementary school in a big city. The result of many field study and numerical analysis is shown up direct reinforcement used to anchor.
-
In order to evaluate the stability of railway cut-slope under rainfall, explanatory variables and subordinate variables were selected for multivariate analysis. Furthermore the site which had occurred failure due to rainfall was investigated, and by executing multivariate analysis for 121 cases, critical rainfall was defined by the case that had high value of correlation factor. The 0.3 square value of maximum hourly rainfall during 24 hours before failure caused the collapse of railway cut-slope and could be used to estimate the stability of railway cut-slope. From the result of application to a collapse example, the evaluaton method by critical rainfall curve is satisfactory.
-
In this study, static Pile load tests and PDA for open-ended steel pipe pile(
$\phi$ = 609.6 mm, t = 14 mm) penetrated into the gravel layer(GP - GM) was accomplished and axial load distribution was measured. Based on the tests results, the ultimate bearing capacity and axial load bearing mode were examined. Also, the ultimate pile capacity was calculated by APIL$E^{PLUS}$ ./. -
It is very difficult to accomplish load tests of piles with large diameter constructed on the offshore area, because of requirement for large scaled loading equipment and bad testing conditions. Therefore, so far in many cases pile driving dynamic formulas have applied to quality control, and recently dynamic load test method is widely used for confirming bearing capacities of such piles. However, in cases of piles with very large diameter about 2,500mm, it is nearly impossible for regular type load test methods of piles such as static and dynamic to apply owing to very large design load. This is case studies of load tests such as modified static and dynamic load tests of piles and point load tests of rock samples for estimating rational allowable bearing capacity of very large diameter piles constructed on the marine area.
-
Crushed Stone Pile(CSP) is one of the ground improvement methods available to loose sand and clayey ground by forming compacted CSP in the weak soil layer. The effects of this method are enhancement of ground bearing capacity, reduction of settlement and prevention of lateral ground movement in cohesive layer, reduction of liquefaction potential in sandy ground. This study performs model tests in 1.0m
${\times}$ 1.0m${\times}$ 1.0m and 1.5m${\times}$ 1.5m${\times}$ l.2m model tank to observe bearing capacity of CSP treated ground. The area replacement ratio of CSP composite ground varies 20%, 30% and 40% with square grid pattern. After the composite ground was consolidated under pressure of 0.5kg/$\textrm{cm}^2$ and 1.0kg/$\textrm{cm}^2$ , load tests were carried out. The results show that ultimate bearing capacity increases with area replacement ratio and the preconsolidation pressure of ground. -
The bearing capacity of drilled shafts that take excavation by Percussion Rrotary Drilling(PRD) into consideration was evaluated using static and dynamic pile load tests. The emphasis was on quantifying the allowable bearing capacity and point load-transfer at the pile tip on seven instrumented steel piles. Of the seven instrumented piles, five piles are placed to the bottom of the excavation by rotary and pushing into the final depth of the excavation, as opposed to the two driven piles. Based on the results obtained, it is shown that the skin friction mobilized by PRD is much greater than point resistance, whereas in driven piles, the point resistance is greater than skin friction. It is also found that much greater pile capacity was proved in the case of drilled shafts, compared to the driven piles and thus, the excavation by rotary drilling gives reliable pile capacity required to design axially loaded piles.
-
Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various depth are calculated using traditional formula and FEM analysis. The results show that theoretical values are more conservative in strain whereas FEM analysis gives larger stress. Considering the strain criteria - 3.5 %, maximum, flexible pipes can be buried at the range of 50cm to 5m in depth without additional soil improvement.
-
The existing bonding methods of steel pipe piles into pile caps have many problems during construction or design. To overcome these, the composite bonding method of the bolting type and the welding type are proposed in this stud\ulcorner. The full scale test and the numerical analysis using finite element method were performed to verify the function of them. As results, the method of the filled with concrete in steel pipe piles head was good effective to increse strength. And the composite bonding methods are effective to protect the damage caused by earthquake than the bolted bonding method. Also, the composite bonding methods are cheaper than the existing bonding methods and a good construction as well.
-
The soil-steel bridges which were introduced in Korea recently are widely used instead of underpasses of highway or small bridges. This bridge is a kind of flexible buried conduit which sustain the applied load by the interaction with the backfill soil. The 6.25m din. round soil-steel bridge was instrumented so as to investigate the behavior of load sustenance, The axial forces and moments at the 7 locations around the metallic shell were calculated from the measurement of strains during backfilling. The maximum axial force and moment were compared with those of various design predictions. Finally, the stability of bridge was evaluated.
-
For temporary excavation support in private land area, the strand of ground anchor should be removed In order to get permission to install anchors. The extractable or removable-strand compression anchor system was developed and evaluated by a series of pull-out load tests. Anchor pull-out tests were performed on seven instrumented full-scale low-pressure grouted anchors installed in weathered soil at the Geotechnical Experimentation Site at Sungkyunkwan University, Four anchors are the compression type anchors and three are the tension anchors. Performance test, creep test, and long term relaxation test were performed and presented. Load distributor was developed in order to distribute large compressive stresses in grout.
-
In this study, 3-D FEM analysis are carried out to investigate the effect of the corners and re-entrant corners which can't be analysed by 2-D analysis. The excavation shape is re-entrant type conditions. The wall displacement, earth pressure and effectiveness of the corner struts are investigated in the re-entrant case, The 3D analysis are peformed to evaluate the effect of various factors, such as re-entrant corner size, excavation depth, and presence of struts. The wall displacement and earth pressures are influenced the size of re-entrant corner. Therefore, the effect of re-entrant corner should be considered in the evaluation of the earth pressure and displacement of the corners. Finally, strut-support systems are not effective at the re-entrant corner.
-
Since micropiles were conceived in Italy in the early 1950s, which have been widely used for In-situ reinforcement, bearing pile or the concept of combination in the world-wide. The meaning of micropiles usually differs from that of a general deep foundation. Because the load capacity of it was mainly affected by skin friction. Also, it could be obtained the improvement effects of load capacity or ground's rigidity by the unitary behavior of ground and micropiles. In this study, The model tests were peformed on the dense sand where micropiles are set to the vertical direction. Strip footing was used in it. Steel bars of dia. 2 and 4㎜ were used in model tests of which the sand was attached on the surface, and the length of it was changed as 2B to 6B(where, B is width of strip footing) Through this process, the load capacity were analyzed from the test results in the relationship between load and displacement.
-
A computationally efficient algorithm to analyze a group pile behavior is proposed by consideration of both soil-pile and pile-cap interactions. Using toad transfer method the nonlinear characteristics of the soil-pile interaction for a single pile is modeled by piecewise linear soil springs (p-y, t-z, and q-z curves). Beam-column method, one of the most practical approaches, is used for numerical modeling of the soil-pile system. In addition to the group effect resulting from the soil-pile-soil interaction, for a more realistic analysis it is essential to consider the effect of pile-cap interaction including geometric configuration of the piles in a group and conectivity conditions between piles and the cap. This paper mainly focuses on the pile-cap interaction and the development of a rational numerical procedure of its incorporation with the beam-column method.
-
The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.
-
Piled raft foundations are usually used to reduce total and differential settlements of superstructures. In the piled raft foundations, the raft is often on its own able to provide adequate bearing capacity and only few widely spaced piles are added to the foundation to keep settlements be1ow a certain limit. In this paper, experimental studies on the load sharing ratio between piles and raft are carried out. Also, for evaluating the application of optimum design technique using a genetic algorithm, optimal locations of files are compared with the results of laboratory model tests. from tile results of laboratory model tests, there are found that the load sharing ratio between files and raft is depended on the number of piles and stiffness of raft, and the optimal locations of piles became concentrated on the middle of rafts. From these results of laboratory model tests, the optimum technique using a genetic algorithm is acknowledged to the application in the piled raft.
-
An apparent earth pressure envelope for anchored walls proposed by FHWA was compared with Terzaghi & Peck's earth pressure envelope. The anchor design load, the maximum bending moment and the penetration depth were calculated by a simple beam analogy method for each type of envelope.
-
Sand pile is one of the widely used ground improvement methods. Sand pile improved ground will have composite ground effects, even though the primary purpose is the accelerated consolidation. However, the consolidation of sand pile improved ground as a composite ground is substantially under developed. This study investigate the effect of composite ground for relatively low volume displacement sand piles. Plate bearing tests and earth pressure cell measurements are performed. It turned out that the contribution of sand pile as a load bearing mechanism is not substantial. However the bearing capacity of the surrounding clayey soil is increased by sixty percent, and it cause the stiffness change during consolidation. Therefore it is expected that, the effect of increased stiffness of sand pile improved ground is influenced by change of ground stiffness.
-
Bioremediation is a degradation process of existing organic contaminants in soils and groundwater by indigenous or inoculated microorganisms. This process can provide economical solution as well as safe and effective alternative in remediation technologies. However, it has been suggested that the rate of bioremediation process of organic contaminants by microorganisms can be limited by the concentration of nutrients and TEAs(Terminal Electron Accepters). In in-situ bioremediation, conventional pumping techniques have been used for supplying these additives. However, the injection of these additives is difficult in low permeable soils, and also hindered by preferential flow paths resulting from heterogeneities in high permeable ground. Therefore, the Injection of chemical additives is the most significant concern in in-situ bioremediation. Most recently, electrokinetic technique has been applied into the bioremediation and the injection characteristics under electrokinetics have not been examined in various soil types. Therefore, in this study, electrokinetic injection method is investigated in kaolinite and sand, and the concentration of ammonium(nutrients) and sulfate(TEAs) in soil is presented.
-
The last 30 years have been significant worldwide growth in the use of EPS as a lightweight fill material. This paper analyzes the compressible inclusion function of EPS which can results in reduction of static earth pressure by accomodating the movement of retained soil. A series of model tests was conducted to evaluate the reduction of static earth pressure using EPS inclusion and determine the optimum stiffness of EPS, Also, field test was conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on field test it is found that the magnitude of static earth pressure was reduced about 20% compared with theoretical active earth pressure.
-
In the KOESWall system, non-woven geotextiles are placed at the face of reinforced earth until the facing blocks are built up. And when this system is used as temporary structure, geotextiles facings are exposed to sunlight during service lifetime. During these periods, degradation of nonwoven geotextiles are occurred by UV light. So the UV-resistance of nonwoven geotextiles must be assessed correctly, in considering of the site conditions. In this study, laboratory test and the field test have been performed to evaluate the UV resistance of non-woven geotextiles used in KOESWall system and the results are expressed in terms of tensile characteristics & SEM photographs.
-
Compaction Grouting System, the method which makes ground compact by injection of low slump mortar, Is widely used for reinforcement of soft ground, restoration of structures happened differential settlement, underpinning and restoration of damaged dam core. The quantitive analysis of ground improvement for this method has not performed yet. So, design parameters about thls method must be studied through performance of CGS in various types of soil to make CGS adaptable widely. In this study PBT, SPT and field density test were performed for analysis of the characteristics of ground improvement and pressuremeter and inclinometer were installed for analysis of the characteristics of compaction in adjacent ground. In this paper, denoted much effects for filled ground that increasing of the bearing capacity, confirming the displacement of adjacent ground and the effective radius of injection.
-
This study was to analyze characteristics of soils reinforced by FPF(Fibrillated Polypropylene Fiber). Laboratory test, model test and field tests were performed on soils reinforced by fibers, to evaluate the shear strength characteristics. For the silty sand, clayey sand and silty clay, the influence of fiber shape, fiber length and fiber content were evaluated from compaction test, direct shear test, uniaxial test, california bearing ratio(CBR) test. Fibrillated type fiber, 5cm long with a content of 0.5% shows 5∼30% increase of friction angle and 7∼55 percent increase of CBR value.
-
PVC로 코팅된 폴리에스테르 섬유로 만들어진 지오그리드 보강재에 대해 변형률을 달리하여 단일 또는 다단 크리프 하중단계를 포함한 하중을 연속적으로 작용시킴으로써 그 인장파괴강도를 검토하였다. 연구결과, 동일한 변형률에서 지오그리드의 인장파괴강도는 극한인장파괴가 되기 전에 작용된 웅력이력에 의해서 거의 영향을 받지 않는다. 또한 지오그리드의 설계파단강도는 적정한 변형률하에서 정의되어야 하며, 변형률 속도가 빠른 인장시험을 통해 지오그리드의 설계파단강도를 얻을 경우 이에 대한 보정이 필요할 것으로 사료된다.
-
Generally, OPC(ordinary portland cement) is used for grouting in Korea, and bentonite has usually been added to prevent the deposition of cement particles. The dispersion of CB(cement bentonite) grout is influenced by variable factors i.e. water to cement ratio, particle size of cement, kind of bentonite, adding volume, methods of adding, viscosity of CB grout materials and curdling time. Among variable factors, the viscosity of CB grout materials is influenced by the dispersion, and dispersion is improved as increasing the mixing speed. In this paper, described a suitable mixing speed of the High Speed Mixer in field, engineering characteristics of CB grout materials vary with the water to cement ratio and the mixing speed as well as confirming the state of dispersion.
-
Copper slag is produced about 700,000 tons annually though copper refining process in Korea. In the paper, a laboratory investigation was carried out to estimate the geotechnical properties of copper slag and examine the feasibility of using the copper slag as a substitute for conventional construction materials and the improvement of the soft clay deposit. The specific gravity of copper slag is 3.45, and pH is 7.83. And the size distribution of the copper slag is well graded, so usage of copper slag will be extended in Geotechnical engineering fields. Copper slag has the permeability of 3.502
${\times}$ 10 ̄$^2$ cm/sec, which is satisfied with the criterion of sand drainage materials.. At the same time, it is thought to be suitable material for sand mat since it meets JIS of grain size distribution. The content of CaO from steel slag is about 40 percent while that of CaO from copper slag is about 5 percent. Based on this fact, copper slag has less hardening property compared to steel slag. Therefore, copper slag can be used as vertical drains, filters, and sand mats for improving the soft deposit. -
지진등에 의해 유발된 동 하중에 의한 지반-구조물 계의 응답은 지반-구조물사이의 경계에서의 마찰특성과 미끄러짐에 의해 크게 영향을 받게 된다 본 논문에서는 진동대(Shaking table)를 이용하여 조립토와 건설재료(Steel)의 경계에서 지반으로부터 지중구조물에 전달되는 전단응력 의 전달정도를 파악하기 위한 실험을 실시하였다. 본 실험에서 설정한 미끌어짐속도 범위내에서는 미끄러짐속도 변화에 따른 조립토와 건설재료(Steel)사이의 동마찰계수의 변화가 작다는 사실이 관찰되었다. 그리고 조립토의 평균유효입경의 변화가 동마찰계수에 미치는 영향도 함께 조사되었다. 또한 이 동마찰계수를 같은 조립토에 대한 평면변형률시험을 통해 얻어진 최대내부마찰각으로부터 구한 마찰계수와 비교하여 정량화하였다.
-
The Ν-value in the standard penetration test(SPT) is affected by the magnitude of the rod penetration energy transmitted from the falling hammer as well as the geotechnical characteristics of the ground. Understanding of the striking energy efficiency in the SPT equipment is getting important for that reason. The energy efficiencies of the doughnut hammer with the hydraulic lift system and the automatic trip hammer system were investigated through field tests using the instrumented rod and wave-signal acquisition systems including the pile driving analyzer(PDA) . The rod energy ratio, ΕR
$\_$ r/ was defined as the ratio of the energy delivered to the drilling rod to the potential free-fall energy of the hammer. It appears that the type of the hammer and lift/drop system had a strong influence on the energy transfer mechanism and ΕR$\_$ r/ also varies according to the energy instrumentation system and the analysis methods. -
In this paper shows the evaluation of the liquefaction potential of soils using in situ test. There are different types of in situ test used in the evaluation the liquefaction potential. In the particular study the Standard penetration test(SPT), Cone penetration test(CPT), ad Seismic cone penetration test (SCPT) were used. The SPT N value has been used all over for a very long time. The evaluation of the liquefaction of soil was preformed using the worldwide renowned CPT and SCPT. Shake 91 program was used to evaluate the results obtained by different in situ test and were later analyzed.
-
Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.
-
The construction of bored tunnels in soft ground inevitably causes ground movements. In the urban environment these may be of particular significance, because of their influence on buildings, other tunnels and services. The prediction of ground movements and the assessment of the potential effects on the structures is therefore an essential aspect of planning, design and construction of a tunnelling project in the urban environment. In this study, to minimize the effect of tunnelling-Induced ground movements on the adjacent structures, a system for tile settlement risk management was developed. The GIS based risk assessment system for adjacent structures developed in this study consists of several modules such as building information module, settlement evaluation module, potential risk assessment module for adjacent structures, and analysis module for monitoring data. This system focuses on controlling and managing construction processes that may lead to settlement In the surrounding buildings and can contribute to producing the optimum technical and economic design.
-
A graph or topographic map can often convey larger amounts of information in a shorter time than ordinary text-based methods. To visualize information precisely it is necessary to collect all the geological information at design stage, but actually it is almost impossible to bore or explore the entire area to gather the required data. So, tunnel engineers have to rely on the judgement of expert from the limited number of the results of exploration and experiment. In this study, several programs are developed to handle the results of geological investigation with various data processing techniques. The results of the typical case study are also presented. For the electric survey, eleven points are chosen at the valley to measure the resistivity using Schlumberger array. The measured data are interpolated in 3-dimensional space by kriging and the distribution of resistivity are visualized to find weak or fractured zone. The correlation length appears to be around 5 to 20 meter in depth. Regression analyses were performed to find a correlation length. No nugget effect is assumed, and the topographic map, geologic formation, fault zone, joint geometry and the distribution of resistivity are successfully visualized by using the proposed technique.
-
As the first step for the application of seismic landslide hazard maps to domestic cases, two types of hazard maps on Ul-joo from pseudostatic analysis and Newmark sliding block analysis are constructed and comllared. Arcview, the GIS program and the 1:5,000 digital maps of the test-site are used for the construction of hazard maps and tile parameters for the analyses are determined by seismic survey and laboratory tests. The results from the pseudostatic analysis have more conservative values of lower critical slope angles, although the results from the two different analyses have similar tendencies. In detail, with increasing the peak ground acceleration, the difference between the two analyses in the critical slope angle increases, while the difference decreases with increasing the maximum soil depth.
-
In this study, the effect of relative density and fine contents(Finer then # 0.08mm sieve) on liquefaction phenomenon in reclaimed land by hydraulic hammer compaction is analyzed. For more site-specific studies, reclaimed land in Inchon International Airport is selected and the cyclic triaxial tests are performed on disturbed samples. In cyclic triaxial tests, the characteristics of reclaimed land in Inchon International Airport are considered sufficiently. The liquefaction resistance stress ratio (
$\tau$ $\ell$ /$\sigma$ v') can be defined by relative density 40, 50, 60, and 70% and also by fine contents : 0, 10, 20, 30, and 40% under relative density (D$\_$ r/) 50% used disturbed samples. From tile result of comparing tile cyclic triaxial tests, it is shown that the liquefaction strength of soil increases with increases of relative density and fine contents. Fspecially fine contents is the main factor affecting the liquefaction potential. In addition, the liquefaction resistance stress ratio is reduced by the increase of fine content and tile ratio of change is steep until fine contents 20% and that is flexible during the range of fine contents 20% to 40%. Through this study, it is proved that the soil characteristics (fine contents 5∼20%) of the reclaimed land in Inchon International Airport flays an important role in the reduction of liquefaction potential. -
In this study, performance of reinforced railroad roadbeds with the crushed stones was investigated through the real scale railroad roadbed tests. Several real scale reinforced railroad roadbeds were constructed in the laboratory with different subgrade conditions and were tested with the estimated actual train loads including the impact loading of train. The affecting factors such as settlement, earth pressure and stress change at the surface of reinforced roadbed, subgrade layers as well as surface of rails were measured. It was found through the actual testing that for the roadbed with the same thickness, the settlement and vibration level (velocity) of reinforced roadbed decreases with the increase of reaction modulus of subgrade. The settlement of reinforced roadbed with the same reaction modulus of subgrade also decreases with the increase of thickness of the reinforced roadbed.
-
Material damping is an important parameter to evaluate the site response by a dynamic loading. Currently the material damping of the subgrade is mainly determined by a resonant column testing. Typical methods to evaluate material damping include half-power bandwidth method and free-vibration decay method. In the large strain range, the half-power bandwidth method gives an erratic damping factor, because the method is based on the assumption of the linear behavior of a specimen. The free-vibration decay method has also limitations in that the damping factors vary with the range of cycles in calculation, and also in that the specific shear strain can not be designated for the free vibration. In this study, the frequency-phase method, which was developed to evaluate material damping of a beam simply supported, is introduced to evaluate the material damping by the resonant column testing. Also, the comparison among half-power method, free-vibration decay method and the frequency-phase method is provided for a remolded sand.
-
The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it Is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils ulder low and high strain amplitude, For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum degree of saturation under low and strain amplitude is 32 ∼ 37% which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.
-
The horizontal drain method is one of methods improving reclamation ground. This method reduces consolidation time by using drained installed horizontally, and negative pressure is applied on end of these drains by vacuum pump. But, effective negative pressure still wasn't evaluated in applying this method to reclamation ground. To estimate optimum negative pressure, soil box test that make a model the in-situ by installing horizontal drains in the center is performed pressing different vacuum pressure In the laboratory, and the variations in settlement and volume of drained water through the drains during consolidation process were measured. Also, water content with distance from drain and with depth is measured after the test.
-
There are many engineering applications that demand settling acceleration and volume reduction of fine solid suspensions. It is a matter to Improve the dredged soil thickening as well as the dewatering characteristic, because settling acceleration of dredged soil decreases the scale of industrial process and volume reduction of dredged soil decreases environmetal challenge to the disposal sites. Direct electric current induces the movement of fine solid particles suspended in water. Upon formation of a soil structure, the current further induces the movement of water and contaminant in the soil skeleton. Theses phenomena are known as electrokinetics. This study investigates the viability, of using the technique of electrokinetic dewatering to river dredged soil for settling acceleration and volume reduction. The aspect, such as sedimentation velocity, final volume and current variation are discussed.
-
In this study, the charactersistics of horizontal drains used to stabilize the dredged fill are investigated experimentally by doing tensile strength test, discharge capacity test, and filter clogging test. The types of the drains selected for the study are filament type (Tyre-E), embossed type(Type-P) and heat bonded cubic type with the thickness 10mm(Type-010) and 5mm(Type-05). The results of tensile strength and discharge capacity test show that the performance of drain Type-O10 was better than the other drains. This is caused by the fact that the lattice shape core of drain Type-O10 has strong rigidity and minimizes the loss of the sectional area of discharge with increased confining pressure. Analyzing the compatibility of filters by the results of the strength characteristics test and clogging test, the filter of filament type drain produced with polyester clothed polyamide performed well.
-
This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.
-
For construction and design of tunnels, groundwater flow models are used to find the influence of groundwater to the stability of tunnels considering the geological condition around the tunnels and the materials used in tunnel linings. For the analysis of tunnel flow, some commercial programs, e.g. MODFLOW, SEEP/W etc., are used. These programs have limitations that MODFLOW could not define curved surface smoothly in three dimensional flow media and SEEP/W is the 2-dimensional flow model. In this paper, the ability of a finite element program developed for analyzing 3-dimensional groundwater flow is examined. Confined steady state groundwater flow solution in non-homogeneous media is obtained using isoparametric element with eight trilinear hexahedron nodes and is compared with the result of MODFLOW. It was found that the solution yielded a good result with the three dimensional flow studied.
-
Physicochemical phenomena in soils are dependent upon pH when using electrokinetic extraction for the contaminants removal especially for heavy metals. pH variation in soils is affected on H
$\^$ +/ and OH ̄ ions produced by electrolysis reaction and buffer capacity of soil. High amount of heavy metals are retained in the soils if the soil buffer capacity remains high enough to resist a change in pH. Therefore, accurate pH estimation of soil is important in the application of electrokinetic mechanism for decontamination and understanding of subsurface physicochemical characteristics is also required as well as considering buffer capacity for the enhanced methods application. For these, buffer capacity and pH distribution were measured for the four soils, and also compared with modeling results. The results of buffer modeling were good agreement with experimental data. It is showed that four soils were effected by buffer capacity -
The purpose of this paper Is to present and discuss some of evaporation and desiccation observed in laboratory experiments under controlled conditions, and is to improve PTM(Progressive Trenching Method) operating technique. PTM is the technically feasible and economically justifiable dewatering and desiccation technique for dredged material containment areas. A series of laboratory experiments with large model test were carried out to get evaporation rate and strength increase. Surface desiccation of dredged material is basically changed by evaporation characteristics which is controlled by weather and trench type, etc. This study shows that trench depth and rain fall are important factors in desiccation of dredged soft clay.
-
In this study, the engineering characteristics of soil-bentonite mixed liner are investigated using the laboratory hydraulic conductivity and strength tests. The soil used for the liner is clayey silt in the site and the weathered granitic soil located near the waste landfill studied. Mixing ratio of the bentonite which satisfies the requirement of hydraulic conductivity is determined and the optimum mixing ratio of betonite is recommended for the landfill. After the mixed liner is constructed, the block samples of the constructed liner are obtained and the properties of interest satisfy the requirements of the liner of the landfill.
-
There has been a steady increase in geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation on geoenvironmental characteristics related to waste landfill and waste soil. This study was carried out to evaluate the geoenvironmental properties of sorted soil from unregulated landfill wastes. The physical, mechanical, and environmental Properties of sorted soil were investigated for utilization in civil works.
-
Increased quantities of sewage sludge coupled with stringent regulations make it important to develope alternatives for residuals management. The use of PARAFIX as a solidifying agent for sewage sludge was investigated by several tests. Basic physicochemical characteristics, strength, permeability, and leaching characteristics were examined. PARAFIX was found to be very effective in reducing permeability, increasing strength, and immobilizing heavy metals. Based on the tests, it Is ascertained that PARAFIX enhances the solidification of sewage sludge. Also sewage sludge solidified with PARAFIX may be used effectively for construction materials.