Proceedings of the Korean Society of Precision Engineering Conference (한국정밀공학회:학술대회논문집)
Korean Society for Precision Engineering
- Semi Annual
- /
- 2005-8446(pISSN)
Domain
- Machinery > Precision Machines
2004.10a
-
This paper describes a perception of small-obstacle using ultrasonic sensors in a mobile robot. The research on the avoidance of the large-obstacles such as a wall, a large box, etc. using ultrasonic sensors has been generally progressed up to now. But the mobile robot could meet a small-obstacle such as a small plastic bottle of about 1 l in quantity, a small box of 7
${\times}$ 7${\times}$ 7 cm3 in volume, and so on in its designated path, and could be disturbed by them in the locomotion of the mobile robot. So, it is necessary to research on the avoidance of a small-obstacle. In this paper, the small-obstacle perceiving system was designed and fabricated by arranging four ultrasonic sensors on the plastic plate to avoid a small-obstacle. The small-obstacle perceiving system was installed on the above part of the mobile robot with the slope of 40.7$^{\circ}$ to a horizontal line. The static characteristic test and the dynamic characteristic test were performed to know the information of the used ultrasonic sensors. As a result, the mobile robot with the small-obstacle perceiving system could avoid a small-obstacle, and could move in indoor environment safely. -
A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300
$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet. -
This paper presents ESPI system for the measurement of thermal expansion coefficient of STS430 up to 1,000
$^{\circ}C$ . Existing methods, strain gauge and moire have the limitation of contact to object and do not supply the coefficient up to 800$^{\circ}C$ . There needs to measure the data up to 800$^{\circ}C$ , because heat resistant materials have high melting temperature up to 1,000$^{\circ}C$ . In previous studies related to thermal strain analysis, the quantitative results are not reported by ESPI at high temperature, yet. In-plane ESPI and vacuum chamber for the reduction of air turbulence and oxidation are designed for the measurement of the coefficient up to 1,000$^{\circ}C$ and speckle correlation fringe pattern images are processed by commercial image filtering tool-smoothing, thinning and enhancement- to obtain quantitative results, which is compared with references data. The comparison shows two data are agreed within 4.1% blow 600$^{\circ}C$ however, there is some difference up to 600$^{\circ}C$ . Also, the incremental ratio of the coefficient is changed up to 800$^{\circ}C$ . The reason is the phase transformation of STS430 probably begins at 800$^{\circ}C$ . -
In the present research, a ultra-precision diamond cutting of thermo-plastic materials, polycarbonate (PC) and cyclic olefin polymer (COC), is carried out by applying a method named ultrasonic elliptical vibration cutting developed by the authors. It is experimentally proved that good optical surfaces are obtained by applying the elliptical vibration cutting in cases of machining of flat surfaces and grooves as compared with the conventional diamond cutting. The maximum surface roughness in peak to valley value obtained is less than 60 nm and 20 nm for PC and ZEONEX, respectively.
-
Weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The more contact area between a body frame and a weatherstrip, the higher efficiency of sealing. A weatherstrip is a sort of an elastomer. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. In this study, nonlinear finite element(FE) analysis is performed to obtain displacements and contact shapes of the weatherstrip. The FE model is developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased.
-
Electrochemical discharge machining (ECDM) has been found to be suitable for the micro-hole machining of nonconductive materials such as ceramics or glass compared with existing conventional and also non-conventional machining methods. However this machining process has some problems such as low geometric accuracy and low machining efficiency due to the random spark generation at the end of the electrode. This paper proposes the methods to improve the geometric accuracy of micro-hole using powder mixed ECDM process. The experimental results show the effects of powder producing improved geometric accuracy of machined hole and decreased concentration of spark energy.
-
The spider of a drum washing machine receives the repeated fatigue loadings during laundering. Although the spider is designed statically safely, it often happens fatigue failure. Therefore it requires the safe design for fatigue and needs the prediction of quantitative fatigue life. The S-N diagram for a spider material is developed by fatigue test and statistical analysis. The stresses are measured directly from strain gages on the spider. To predict the fatigue life of spider, the rainflow counting method and Miner's rule are used. The data for fatigue life are analyzed statistically. From these data, reliability estimation for fatigue life can be done and also, equivalent fatigue life can be obtained. It will be applied to make and improve to a short period for design and prototype test.
-
A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is already developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, the effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. The effects of the fraction of the potential site(
$f_{P}$ ) and the nucleation probability($P_{N}$ ) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are studied.d.d. -
Recently, life cycle and lead-time of products have been shortened with the demand of customers. Therefore, it is important to reduce time and cost at the step of manufacturing trial molds. In order to realize three dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, traditional machining process spends a lot of time in cutting product and the remained material causes trouble such as inconvenience for clean. In this work, a new machining process using the hot tool has been proposed to overcome those limitations. In the process, the hot tool moves the predetermined path and the heat of the tool decomposes the remained material. In order to set up the process, the hot tool to satisfy requirements is designed and the material thermal properties are obtained using the DSC and TGA machine. The relationships between process parameters and thermal radius of the tool are obtained through experiment.
-
An innovative in-core neutron flux mapping system has been developed and applied successfully for service in a commercial pressurized water reactor. With the benefit of double indexing path selector (Dip
$s^{ⓡ}$ ) mechanism, the reliability of the detector drive system has been improved five times higher than that of conventional systems, and the problems caused by the serious friction generated between the detector cable and guide tubing has been solved completely because the Dip$s^{ⓡ}$ architecture allows the detector guide tubings to have larger curvature and shorter length in nature. The simple and fast maintenance is particularly emphasized in the detector drive system to secure minimum radiation exposure to the maintenance personnel by optimizing the number of components and providing easy access to the components. The programmable logic controller based digital controller with Window$s^{ⓡ}$ based operator s console provides fully automated and user friendly operation and maintenance support means. -
Design of manufacturing system is a very complicated and tricky process. Since no efficient method has been known, yet it has been mainly done based on experience and heuristics. Even mostly used simulation approaches can only evaluate the performance of an already configured system, but cannot provide a help to configure or reconfigure a manufacturing system. An efficient way to (re-)configure manufacturing systems might be to use building blocks of a manufacturing system in the similar manner the recent products are configured based on modular principle. In this paper, the concept of a building block and its representation method are described. An example of assembly system configuration is also given.
-
There are an electronic and a manual type in Bidet. The electronic bidet has some advantages. it supplies multiple functions and is up easily. However, it has frequent defects and a high price. The manual bidet is not need to supply electric and is cheaper than the electronic type. However, it is needed to supply hot water and is hard to set up. In order to solve these defects, this study designed a bidet heating unit using an electric instantaneous water heating method. To get a proper heating elements, experiments were performed about a Ni-Cr heater and a film heater.
-
This paper presents a PC-based controller of industrial SFFS(Solid Freeform Fabrication System). The SFFS has multiple sub-controllers for the building room, the powder room, the temperature, and the density of oxygen in the chambers. Hence the main PC-based controller should effectively and timely send commands to the sub-controllers, and monitor the overall SLS process. The required actuators and sensors are selected to optimize the overall performance of the SFFS.
-
A technical performance of the coating depends greatly on the thickness of painting film or coating film. Therefore the confirmed report of the technique to measure accurately is essential to the coating film thickness for the assessment about a coating quality performance. In this paper, two gap sensors - eddy current gap sensor and capacitance gap sensor - which has a different operating principle were used to measure the thickness of a nonmagnetic substance coating film such as paint, enamel or ceramic that was coated on the metallic material. A capacitance gap sensor was used to measure the distance between the sensor head and a coating film and an eddy current gap sensor to measure the distance between the sensor head and a base metal. Then the thickness of a coating film was obtained by the difference of two measurement value. At this result, the suggested dual sensor can measure an arbitrary film thickness to be coated on a base metal as the measurement value of coating thickness exists accurately within the 2% error.
-
To cope with the challenge from global market characterized by frequent changes in requirements, manufacturing enterprise should be able to promptly adjust its manufacturing system accordingly. Therefore, it is important to provide manufacturing system designer with an appropriate methodology to (re-)design a manufacturing system subject to requirements change. Axiomatic design theory focuses design activity mainly on functional consideration rather than physical, and has been known as effective especially in the conceptual design phase. This paper introduces an approach to apply the axiomatic design principle to manufacturing system design. It is shown that a new design solution can be reached quickly by finding design parameters for the added or revised functional requirements and thus achieving a set of functional requirements as well as design parameters that satisfy the independence axiom. Some illustrative examples are also given.
-
This paper dealt with FMEA, Which is a method of the analysis to secure safety and confidence coming up to customer's expectation in consideration of the environment of the corporation, the industrial environment, and the functional improvement. And by using FMEA, We showed the example analyzed the confidence of the reduction gear. It was proved by the result of the analysis that the rate of the breakdown which is usually regarded as the first important point to reform can't satisfy the selecting basis to improve. Also the result said that it is not right to depend on only the rate of the failure in making the list of the reform. Through the analysis of the breakdown, FMEA can present the important factors of the reform to improve the confidence of the system. In this study would show the important factors of the improvement in order to product the goods guaranteed confidence through the method of FMEA.
-
In this paper, polishing method using bonded magnetic abrasive particle has been applied to the micro mold polishing. Through process control using the Run-to-Run control, it tried to form the surface roughness In order to grasp the influence of the surface roughness which is reached by selection of control factor and the factor, a design of experiment was been processed. The study is processed with a purpose of to embody and to maintain the surface roughness of nano scale by the basis of an influence between a control factor and the factors which has been selected in this way. As a result, the result of the process control converged at a target value of surface roughness Ra 10nm and Rmax 50nm
-
In recent years, a demand for micro-structure machining is increasing by the development of information and optics industries. Micro machining technology is in general well known in the field of lithograghy. However, the requirement of producing micro machine and/or micro mechanism with metal materials will be increased since a variety of workpiece configurations can be easily made. In this paper, ultra precision machine is developed to obtain micro groove and mirror surface using single crystal diamond tool. According to the cutting experiment, no burr was found at the edge of V-grooves, and the surface roughness of copper is about 1~3nm Ra. It is verified that ultra precision machine is effective to high precision machining.
-
The traction drive have a high power transmission efficiency and small size, a light weight, a low noise. So it is expected that alternative drive part of engine. Because it is necessary stillness that essential condition of drive part used moving tool in a room, it has many-sided in field of application. This traction drive is better suitable than other speed reducer as drive part of electric wheelchair. Also it is sufficiently necessary capacity of existing advanced product as apply traction drive to electric wheelchair.
-
In this project, we have developed the eye-safe LRF system of 1.54
${\mu}{\textrm}{m}$ wavelength using OPO. The maximum measured distance was 3.7km in outdoor experiment. We used Nd:YAG (1064nm) as a laser medium. It was applied BBO to construct the system. We also developed a time-counter for the range finder using a method of TOF (time of flight). The counter-clock used at the time counter was 320MHz making resolution within$\pm$ 1m. Start and stop signals were detected by two channel systems using PIN and APD. The LRF's repetition rate was 4 times per minute. The energy was measured to be over 9mJ. And, pulse-duration was 23ns. Resolution was$\pm$ 2m at the distance measurement using a target. -
Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.
-
This paper is compared the build time of scanning path as to laminate height of the SLC and STL file. The STL file improve the surface roughness according to slicing height. But it have the fault spending long time to the creation of scanning path by being lower slicing height. So we proposed the SLC file to improve this fault. Therefore this paper showed to the build time of scanning path by the increase of peace using the jewellery model.
-
Since a derailment of rolling stocks results in huge losses in properties and lives, the measurement of a derailment coefficient is a very important test item to estimate the running safety of rolling stocks. For a measurement of the derailment measurement of forces between the wheel and rail a measuring wheel-set should be made first. The process to make a measuring wheel-set has some stages for correct measurement. They are as follows; a finite element analysis of a wheel to find a position of holes at which vertical force shall be measured, a finite element analysis for the position of strain gauges.
-
We have demonstrated the fabrication of patterned 3D photonic crystals by holographic lithography in conjunction with soft lithography. Holographic lithography created 3D ordered macroporous structures and soft lithography made tailored defects. Because the hard baked photoresist pattern possessed high resistance against the uncured photoresist solution and the refractive index did not change appreciably by hard baking, a crosslinked photoresist was used as a relief pattern for the holographic fabrication of patterned 3D photonic crystals. More complicated defect geometries might be easily obtained with more complicated patterns on PDMS stamps. Moreover, the present results might be used as templates for 3D PCs of highindex defects that can be exploited as optical waveguides and optical circuits.
-
For the quality control of the industrial products, an automatic hole measuring system has been developed. The measurement device allows X-Y movement due to contact forces between a hole and its own circular cone and the device is attached to an industrial robot. Its measurement accuracy is about 0.04mm. This movement of the plate is measured by two LVDT sensor system. But this system using the LVDT sensors is restricted by high cost and precision of measurement and correspondence of environment so particularly, a vision system with CCD-Camera is discussed in this paper for the above mentioned purpose. The device consists of two of two links jointed with hinge pins basically and, they guarantee free movement of the touch prove attached on the second link in the same plane. These links are returned to home position by the spring plungers automatically after each process for the next one. On the surface of the touch prove, it has a circular white mark for camera recognition. The system detect and notify the center coordinate of capture mark image through the image processing. Its measuring accuracy has been proved to be about
$\pm$ 0.01mm through the repeated implementation over 200 times. This technique will shows the advantage of touch-indirect image capture idea using cone-shaped touch prove in various symmetrical shaped holes particulary, like tapped holes, chamfered holes, etc As a result, we attained our object in a view of the accuracy, economical efficiency, and functionality -
The limited slip differential(LSD) is a device which enables the driving force to be transmitted from one slipping wheel to another wheel in such case that the car is stuck in clay or snow. When the unwanted slipping occurs on one wheel, the LSD temporarily restraints the differential motion to transmit the driving force in the other wheel. So far, many types of LSD were developed such as mechanical lock type, disk clutch type, viscous coupling type, torsion type and multiple clutch type. However these types of LSD is too complicated and expensive, so it is used only for 4WD outdoor vehicles, military vehicles, and a portion of deluxe car. So, many studies has been devoted to improve new types of LSD to cover those demerits of existing LSDs that the hydraulic LSD is developed as arepresentative result of that. The hydraulic LSD which uses the principle of gear pump is packed with viscous oil in tight container. When a slip occurs on one wheel, the hydraulic LSD generates torque caused by high oil pressure in the container. This study has been devoted to suggest an improved hydraulic LSD. In order to achieve it, we designed a new type of hydraulic LSD, produced it and did a rig test with it on real vehicle. From the rig test, it has been confirmed that the new type of hydraulic LSD can be directly applied to exiting vehicles without changing the design criteria
-
Intervertebral cages in the cervical spine have been advantage in spinal fusion to relieve low back pain. In this study the effects of an intervertebral cage insertion on a cervical spine functional spinal unit investigate and cage structural analysis using finite element method. Three-Dimensional finite element models to create computed tomography (CT) scan C3-C4, obtain healthy young male which 1-mm slice section.
-
More complex geometric shapes, including freeform surfaces, are adopted for the design of products to emphasize styling or aesthetics. Modeling of these products is extremely difficult, and often impossible. Reverse engineering is an emerging technology that can resolve this problem by generating CAD models from the physical mockups or prototype models. The laser scanner if often used to acquire the surface information of the part, but is limited in its measuring direction, which if fixed only along the z-axis. A Designed fixture of new shape to supplement these problems in this paper. The new fixture using several joints and an tooling ball holder is designed considering the convenience of the part set-up and the accuracy of the registration. The location of the tooling balls can be arranged to avoid the occlusion of the part and to minimize the registration error. The new fixture is apply to an object part having freeform surfaces to verify the effectiveness of the proposed design.
-
We researched carbon nanotube(CNT) cartridge as a CNT sample for the fabrication of nanotweezer which is composed of a couple of single CNT tip. Our CNT cartridge was made by dielectrophoretic methods, a kind of micromanipulation technique using electric field. Therein we intended to fabricate the CNT cartridge with just conventional function generators and a set of simple electrode. A knife edge and a flat metal electrode were employed as a couple of electrode, and these electrode pair faced each other with the gap. When the gap is filled with CNT suspension, we induced AC electric field into the gap. Then CNTs was attached on the sharp edge in knife edge by dielectrophoresis. This knife edge with attached CNTs is called as the CNT cartridge.
-
In this paper, we propose a simple control scheme, based on second order sliding modes, which guarantees a fast and precise container transfer and the swing suppression during the container movement, despite of model uncertainties and unmodeled dynamic actuators. In the actual case, the swing suppression is obtained by constraining the system motion on a suitable surface which involves both the desired path and the swing angle. Strictly speaking, the trolley velocity is modified on-line, on the actual swing angle, to obtain the suppression of the oscillations not only at the end of the transport but during transfer as well. Such controller has been tested on a laboratory-size model of the 3Dcrane, and some experimental results are reported.
-
The isometric position of the anterior cruciate ligament was calculated during flexion-extension. Flexion-extension motion data of the knee joint were obtained by Fastrak, a three-dimensional motion measurement system. A subject was seated on a flat table and the tibia sensor position was measured with the femur fixed at the table. A three-dimensional knee model was constructed using a graphic tool to simulate the knee motion. Three surgical positions of the femoral tunnel were selected and the distances between the determined tibial tunnel and each femoral tunnel were calculated. The maximum elongation position was found to be in the ten thirty direction of clock.
-
On this study, we improved diaphgram for micro speaker performance using Taguchi method in discrete design space. The design of diaphgram has an effect on performance of micro speaker such as, thickness of diaphgram, shape of diaphgram, etc. Therefore this study carried to decide shape of diaphgram and thickness of diaphgram for minimizing 2nd natural frequency of diaphgram using Taguchi method. we showed improved design factors that minimized 2nd natural frequency of diaphgram. Also, 2nd natural frequency of diaphgram for micro speaker is reduced up to 37 percent maintaining twist mode shape. From the results of ANOVA, 2nd natural frequency of diaphgram for micro speaker have an effect on position of the outer curved shape and thickness of diaphgram.
-
A fatigue test was used to evaluate the fatigue life of an actual structure. The loaded state and the constraint condition of an actual structure must be same as the specimen in order to apply the test results to an actual structure by the specimen. The loaded state and constraint conditions can't be same as the specimen in the actual structure which is complicated. In order to reduce these differences, an actual structure test with a lot of frequencies is need to get a fatigue life curve. Therefore, ten sets of accelerated test units which attached unbalanced mass were composed in this study. Acceleration history about the vibration of an actual structure was acquired. Rainflow counting was used on acceleration history, and the life curve return formula was assumed. The return formula that damage satisfied `1' was acquired in a feedback process by the Miner's rule, which was the linear cumulative damage theory. A conservative fatigue life curve was determined with a return formula to have been presumed by each set. The fatigue life of regular rpm condition was calculated by these conservative fatigue life curves.
-
In this paper a web-based micro fabrication system is discussed. A commercial CAD and a web browser were used as its user interfaces. For the user interfaces, the concepts of Design for Manufacturing (DFM) were implemented providing the fabrication knowledge of micro machining to the designers. Simple databases were constructed to store the fabrication knowledge of materials, tools, and micro machining know-how. The part geometry was uploaded to the web server of this system as an STL (Stereo Lithography) format with process parameters for 3-axis micro milling. A Slice-based process planner automatically provides NC codes for controlling micro stages. A couple of micro parts were fabricated using the system with micro endmills. This design and manufacturing system enables network users to obtain micro-scale prototypes in a rapid manner.
-
The paper deals with gravitational effect on dynamic stability of a cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratio of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.
-
Unlike industrial manipulators, the manipulators mounted on the service robots are interacting with humans in various aspects. Therefore, safety has been the important design issue. Many compliant robot arm designs have been introduced for safety. It is known that passive compliance method has faster response and higher reliability than active ones. In this paper, a new safe mechanism based on passive compliance has been proposed. Passive mechanical elements, specifically transmission angle of the 4-bar linkage, springs and shock absorbing modules are incorporated into this safe mechanism. This mechanism works only when the robot arm exerts contact force much more than the human pain tolerance. Validity of the safe mechanism is verified by simulations and experiments. In this research, it is shown that the manipulator using this mechanism provides higher performance and safety than those using other passive compliance mechanisms.
-
Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800
$\mu$ m. To increase the sensitivity, piezoresistor is made as n-type and x-direction. -
This paper presents studies on the creation time of scanning path using rapid prototype device. In the case of Jewellery, it needs to take time too much at the whole process of rapid prototype in accordance with heigh of the multi-layered. When increases the number of polygon by heigh of the Multi-layered, it has proper influence on the creation time of scanning path. Therefore, we can get the spending time and the number of polygon for the creation during increase the heigh of the multi-layered. These values are showed by the quantitative. We try to analyze relation between these and heigh of the multi-layered.
-
This paper is to develop of 3D reverse engineering equipment. The existing equipment didn't use in the field popularly as it is too expensive. So in this study, we build the reverse engineering system of simple construction using a LM guide and a laser sensor. Therefore we measured product using this equipment, this result compared with the CAD date.
-
This study proposes a new optimization algorithm which is combined with genetic algorithm and ANOM. This improved genetic algorithm is not only faster than the simple genetic algorithm, but also gives a more accurate solution. The optimizing ability and convergence rate of a new optimization algorithm is identified by using a test function which have several local optimum and an optimum design of rocker arm shaft. The calculation results are compared with the simple genetic algorithm.
-
Recently home network has been developed in the field of Information Technology. And there are many protocols for smart home, such as Lonworks, Echonet, KNX, LnCP etc. However, the performance evaluation has not been nearly known between the protocols. Hence, this paper evaluates the performance of KNX by Konnex Association and LnCP(Living network Control Protocol) by LG Electronics. We developed simulation model using flowchart of KNX and LnCP and simulation scenario through analysis of message to be generated in the home network. Furthermore, we evaluate simulation performance, such as mean transmission delay, maximum transmission delay, and collision rate of both protocols.
-
The performance of an inductive position sensor has approved by previous research papers. In this paper, magnetic circuit model of a ring-type multi-pole insuctive position sensor is described. The magnetic circuit model is required to design in ductive position sensor as well as draw a fault tolerance algorithm. Using the magnetic circuit theory, we derived the relationship between voltage applied and flux density in the normal air-gap. By idealizing the modulation/demodulation processes of signal processing circuit, sensor gain with respect to change of displacement is theoretically calculation using the magnetic circuit model, which validate the theoretical derivation.
-
Bearingless motors are the rotational electric machine which utilize a common magnetic structure for rotation and magnetic suspension. Since the bearing function is combined with the motor, the shaft length can be shortened resulting in higher critical speeds. Relationship between suspension force and current of bearingless motor is clearly derived by prior research. However, relationship between displacement of rotor and suspension force is not precisely defined. In this paper, we present model of bearingless motor describing the radial force variation due to the movement of the rotor. Using a distributed magnetic circuit and maxwell stress tensor, we derived a mathematical expression for the radial force. For a slotless bearingless motor, we are able to find an analytical model presented in the form of stiffness. For a slotted motor, we can compute the stiffness by semi-analytical analysis. This model is validated by a finite-element-analysis.
-
The aim of this paper is to investigate the effect of micro-dimple size on reduction friction and to understand the potential of friction reduction through micro-scale dimple to fabricate by photolithography on pin-on-disk test using flat-on-flat contact geometry. It was verify that the friction property with respect to the same pitch has been influence on the size of dimple under lubricated sliding contact. Also, we can recognize from Stribeck curve that the friction property has a connection with the size of dimple. It can explain a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. The friction property has been an effect on the size of surface texture on reduction friction, not only because the density of dimple, but also because the ratio of diameter/pitch. This ratio of approximately 0.5 is recommend under the tested friction condition. It suggested that the ratio of d/p is an important parameter for surface texture design.
-
It is net easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by suing the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models based on the RSM is used in lien of the original models, facilitating design optimization.
-
A self-compensated water-hydrostatic bearing has advantages in bearing stiffness. In this paper, the mechanism is applied to hydrostatic journal bearing for achieving the high bearing stiffness. The finite element method is applied to analyze the load characteristics of the self-compensated journal bearing. From the analyzed results, it is confirmed that though the self-compensated journal bearing has higher load capacity and stiffness than conventional fixed capillary journal bearing, the merit is decreased in the case of high eccentricity, that is, a spindle system with self-compensated journal bearing must be designed to have the load capacity large enough. For improving the practicality, a rectangular type capillary is introduced and discussed. Theoretically analyzed results show that it has more advantages than the conventional annular type capillary in the practical usage. The experimental verification on the analysis method is performed, and the experimental results show good agreement with theoretical results.
-
The area of flat glass panel displays such as LCD (Liquid crystal display) and PDP (Plasma display panel) has been increased more than 2
$\times$ 2 m$^2$ for productivity improvement. However, such a large panel area incurs large panel deflection during panel transfer using robots or AGV (Automated guided vehicle) systems. Therefore, electronic industries are making an effort to find an alternative transfer system for the large glass panels with small deflection. The air conveyor with porous pads is one plausible solution, but it becomes expensive because the large porous pads cost much and air consumption increases as the panel area increases. In this work, a simple air slit levitating conveyor was devised to lower the equipment cost and to reduce the air consumption of system. The air flow model between the LCD glass panel and conveyor was constructed and its validity was verified by experiments. To minimize the air consumption, the conveyor dimensions were optimized, and the air consumptions between the air conveyors with the air slit and that with the porous pad were compared. -
Indexable end mills, which consist of inserts and cutter body, have been widely used in roughing of parts in the mold industry. The geometry and distribution of inserts on cutter body are determined by application. This paper proposes analytical cutting force model for indexable flat end-milling process. Developed cutting force model uses the cutting-condition-independent cutting force coefficients and considers runout, cutter deflection and size effect for the accurate cutting force prediction. Unlike solid type endmill, the tool geometry of indexable endmill is variable according to the axial position due to the geometry and distribution of inserts on the cutter body. Thus, adaptive algorithm that calculates tool geometry data at arbitrary axial position was developed. Then number of flute, angular position of flute, and uncutchip thickness are calculated. Finally, presented model was validated through some experiments with aluminum workpiece.
-
This paper shows the development of remote control system for manipulators which consists of PHANToM Device as a master, Samsung FARA robot as a slave and TCP/IP based LAN for their Communication. This work includes the motion mapping between the master and the slave, Generation of virtual viscosity force preventing operator s unwilled action and 3D remote control simulators for the stable operation of the remote control system, etc. The remote control implementation has been performed and the results shows that the developed system can allow the operator to effectively control the manipulator.
-
The purpose of this study was to investigate the characteristics between EMG timing of muscle contraction and motor impairment in chronic hemiplegic stroke patients. Delay time and co-contraction of 4 patients who had stroke less than 3 years were measured during isometric wrist flexion and extension along the 3 seconds beep signal. Onset and offset of muscle contraction were significantly delayed on the more affected sides than control sides. Offset was significantly delayed than the onset on the affected sides in wrist flexion. Also, recruitment of antagonist was larger than agonist on the affected sides. Co-contraction ratio on the affected side was significantly smaller than control sides in wrist flexion. In affected sides, Fugl-Meyer motor assessment(FMA) shows the correlation of onset delay in wrist flexion and extension. However, co-contraction ratio correlated with FMA in wrist flexion. EMG assessment is likely to be useful outcome measure and provide insights into mechanism for motor recovery in stroke patients.
-
This study deals with the microvalve, which is composed of the multilayer bender type PZT actuator, actuator controller and microvalve body. The object of this study is to develope the microvalve with multilayer bender type PZT actuator. In order to achieve this object, prototype PZT actuator and microvalve were suggested and manufactured. Also, the performance of this model was evaluated through the experiments.
-
The research on surface modification technology has been advanced to change the properties of engineering material. Ion implantation is a novel surface modification technology to enhance the mechanical, chemical and electronic properties of mechanical parts. In this research, nitrogen ions are implanted into aluminum for mold to improve endurance and life span. To analyze modification of surface properties, micro hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimens was higher than untreated specimen and friction coefficient was also improved. In this experiment, it can be expected that nitrogen ion implantation can contribute to enhance the mechanical properties of material and ion implantation technology may also be applied to other materials.
-
This paper presents the design and test of elliptical vibration assisted cutting tool post. It is actuated by two piezoelectric actuators which are connected to the moving part through the elastic hinge with its role of imposing the preliminary pressures. These two actuators are located at right angles so that the resulting tool tip moves like a two-dimensional ellipse. Also, the tool post is activated within the region of linear actuation in order to overcome the distorted elliptical motion. For the precise measurement of the displacement of the tool tip, three-dimensional experimental apparatus was designed and the strokes of the tool post in major and minor axes were measured. The results show that the tool post can produce the variety of vibration locus from a circle with a radius of 5
${\mu}{\textrm}{m}$ to an ellipse with a major axis, a =10${\mu}{\textrm}{m}$ , and a minor axis, b =2.5${\mu}{\textrm}{m}$ -
A Study on the Reliability Improvement of the Spiral Spring in a Sliding Mechanism for Mobile PhonesIn this paper, we improved the reliability of a spiral spring in semi-auto sliding mechanism of mobile phones. In an semi-auto opening mechanism of mobile phone, the spring must have sufficient reliability such that the spring force does not reduce under a half of initial value after 100000 operations. Since the inner space of the mechanism is very small, it is difficult to design a spring having sufficient reliability. We designed a spiral spring satisfying such conditions and analyzed its elastic performances using finite element method.
-
Development of Web-based Mold manufacturing process monitoring & control system using G-code controlThe target of this paper is the development of Web-based monitoring & control system which is for effective and economic management of mold manufacturing process. This system has three module; G-code Control, Monitoring Module and Result analysis module. Also, as the environment of development is based on internet, this system which is possible to the remote site management of manufacturing process works on Web. To be possible to control the manufacturing monitoring by client, each module is made ActiveX control and is based on socket communication. This system makes the foundation which is possible to manage the mold manufacturing process efficiently from remote site by matching real-time monitoring with manufacturing process in factory using G-code control and displaying the result of manufacturing using Ch-CGI.
-
Dynamic model of the Korea standardized rubber-tired AGT light rail vehicle, and boundary conditions between vehicle and infrastructures (running track, guidance rail) were defined to analyze vehicular vibration behaviors occurred at the worst condition for straight running track. Using the commercialized software RecurDyn, resultant forces and vibration accelerations of car body and bogies were analyzed. Based on the Korea performance test criteria for urban transit, vertical and lateral vibration of car body were calculated and evaluated as wearing condition of guide wheels. And resultant forces between bogie guidance frame and guide rail in straight running track were analyzed. As the results, the Korea standardized rubber-tired AGT light rail vehicle satisfied the performance criteria and design requirement .
-
In recent die industry, web-based production control system is applied widely because of the improvement of IT technology. In result, many researches are published about remote monitoring at a long distance. The target of this study is to develop Die Discrimination System using web-based vision, and CAD API when client discriminates die in process at a long distance. Special feature of this system is to use 2D vision image and to match with DB. We can get discrimination result enough to want with short time and a little low precision in web-monitoring by development of this system.
-
This paper presents studies on the development of an internal measurement system for the footwear using laser sensor. The measurement system gains to the height of the profile at internal footwear. It accomplishes the 3-axises control which uses ball screws, L-M guides and stepping motors. It is used a laser sensor at the measurement of the distance, and Labview is used for the control and the measurement. We can get the profile through reverse engineering for the LAST. The data of profile is fixed a heigh of the LAST. Then, we try to verify as compare the profile with one which is collected by Internal measurement system..
-
Electro-active polymer, one of smart materials, is a new alternative technology, which can get an ultra precision movements and bio-compatibilty. This paper presents the relationship between elastic modulus and maximum deflection as a key property of maxwell stress effects and also presents the relationship between dielectric constant and maximum deflection as a key property of electro-striction effects in disc-type actuators using segmented PU. To induce equation about distributed load of a disc, we use boundary condition of fully clamped circular plate and to obtain design parameters of a micro-fluidics system, CFD simulation is performed.
-
Many researches have been focused on optimal designs of a pole shape in order to reduce cogging torques, which are generated between permanent magnets and slots. In this paper, an adaptive controller is proposed for reducing the effect of cogging torques in servo motors. The controller stabilizes the control system and shows an excellent trajectory tracking performance compared to the conventional PD controller.
-
Automobile door-handle is assembled with three parts that are base, skin and cover. Over-molding processing makes assembly of the base and skin. The skin part that was made by PVC polymer has various thickness. Plastic injection molding simulation of part including significant changed thickness as skin is an inaccuracy comparing with real injection molding. To solve this problem, two commercial flow prediction software that are Moldflow MPI and MAPS 3D were used in this study. Simulations were conducted for three types mesh. Taguchi method was applied for simulation experiments. It will be need to compare with simulation results and real over-molding behavior in the near future.
-
In our pervious paper, a new parallel-type spherical 3-degree-of-freedom mechanism consisting of a two-degree-of-freedom parallel module and a serial RRR subchain was proposed[1]. In this paper, its improved version is suggested and implemented. Differently from the previous 3-dof spherical mechanism, gear chains are incorporated into the current version of the mechanism to drive the distal revolute joint of the serial subchain from the base of the mechanism and in fact, the modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, after a brief description on its structure, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model of the mechanism for the inputs which are assumed to be located at the base is derived. Thirdly, through the simulations of the kinematic analysis via. kinematic isotropic index, it is confirmed that the mechanism has much more improved isotropic properties throughout the workspace of the mechanism than the previous mechanism in [1]. Lastly, the proposed mechanism is implemented to verify the results from this analysis.
-
As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.
-
Nowadays, plastic industry has needed to produce parts that require high precision and quality. To make a high precision and quality part, before injection molding, plastic material is investigated about their properties such as shrinkage, warpage, etc. In this study, experiments were conducted with PA6(polyamid) to figure out shrinkage behavior according to three type aspect ratio of samples. The injection speed that affects on shear rate, molecular orientation within plastic part was determined as main variable of experiment. As a result of experimental study, part shrinkage had a tendency to be decreased by increasing injection speed and aspect ratio of samples.
-
In this study, a spatial 3-dof haptic mechanism is implemented. The implemented mechanism does not employ the gear transmissions as velocity reducers for all three joints but uses wire-based transmissions, thereby it is able to minimize the frictions significantly. Also, by employing the structure of the four-bar mechanism to drive third joint from close to the base, the mechanism is able to minimize the inertia effect from the third actuator very effectively. Its kinematic analysis such as position and velocity analyses are performed first. Then, its operating software development, hardware implementation, and the related interfaces between a PC and the implemented Haptic device are completed. To evaluate its potential and its performance as a haptic device, a experiment generating a virtual constraint in a operational task space is conducted and preliminary results are discussed.
-
Productivity of shoe industry in Korea is still more excellent then that of China or Vietnam, But manufacturing technology and productive facility are underdevelopment in comparison advanced country. CAD/CAM system development, one of the most important technology, is totally nonexistent. specially, the automatic generation function and the grading function in shoe sole modeling are dependent of the foreign software. The CAD/CAM software only for shoe modeling is very expensive, so that it is going to weaken shoe industry of Korea. Therefore, We developed 3D gauge curve generation method using 2D NURBS curve in shoe sole modeling.
-
In this study, the inspection path which is considered to free collision is generated by offset surface. When the inspection is executed, the consideration of machine dynamic error increases a precision. Dynamic error is measured on CNC machine bed changing of weight work price. Offset surface is safety space about collision. Because the danger of probe-collision is excluded in Offset surface, it is possible to rapid feed of probe and reduced inspection time. The Program which is possible to simulate using CAIP and is confirmed through actual experiment.
-
Laser aided direct metal deposition (LADMD) process offers the ability to make a metal component directly from 3-D CAD dimensions. A 3-D object can be formed by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using optical sensors is introduced to control laser power and powder mass flow rate. Using H13 tool steel and
$CO_2$ laser system, comprehensive analysis are executed to test the efficiency of the system. In addition, the dimensional characteristics of directed deposited material are investigated with the parameters of deposition thickness, laser power, traverse speed and powder mass flow rate. -
In clinical use, coronary stents keep coronary arteries open after expansion with a balloon catheter and prevent the expanded artery from collapsing. Coronary stents are positioned in artery by catheter with a balloon along a guide wire to the lesion site. Flexibility is one of important ability for delivery. In this paper, Palmaz-Schatz stent and Tenax complete stent were selected because these are the most representative of tubular stents. Finite element analyses for the stent system were performed using ABAQUS/Standard code. The present study estimated the flexibility of coronary stents due to loading directions. Moreover the present paper suggests a numerical method to test the flexibility of stents. In conclusion this paper shows how the finite element analysis can be effectively organized in the stent development.
-
In this study has developed analysis system for automatic inspection of FPD(Flat Panel Display) characteristic, such as brightness, view angle, color ratio in the manufacturing process. Developed system consists of inspection-sensor part, acquiring a data by 3-CCD Color CCD camera and Inspection-stage part, driving a FPD holder to rotation and tilt direction. In experiment results, we could have ensured easily brightness distribution, available view angle, color reproduce and could expect to improve the quality, productivity, and yield.
-
The x-y table of the SFFS to move a printer head must be the system that has a high speed and accuracy. So we propose the SMCSPO algorithm on the timing belt system. The major contribution is the design of a robust observer for the state and the perturbation of the timing belt system, which is combined with a robust controller. The control performance of the proposed algorithm is compared with PD control by the experiments. The results of SMCSPO algorithm showed more accuracy and better performance than PD control. Therefore we may apply the algorithms to a high speed and accuracy control for SFFS.
-
In recent years, various forms of indentation testing have been increasingly used to determine the material properties of specimens. This technique, particularly the nano-indentation method , has been extended to the testing of coating systems in order to calculate the individual properties of the thin coatings and the substrates. However, the interpretation of the test data to achieve this is complex and continues to be a widely studied subject. Based on the finite element method of coated surfaces indented by a Berkovich diamond tip, this paper describes methods for combining FEM and experimental indentation testing to determine coating modulus and hardness independent of substrate effects. Using this proposed methodology, testing and FEM to measure coefficients of friction of sheet steel for outer panel were studied.
-
In this paper, the acceleration is studied for the rigid-plastic FEM of metal forming simulation. In the FEM, the direct iteration and Newton-Raphson iteration are applied to obtain the initial solution and accurate solution respectively. In general, the acceleration scheme for the direct iteration is not used. In this paper, an Aitken accelerator is applied to the direct iteration. In the modified Newton-Raphson iteration, the step length or the deceleration coefficient is used for the fast and robust convergence. The step length can be determined by using the accelerator. The numerical experiments have been performed for the comparisons. The faster convergence is obtained with the acceleration in the direct and Newton-Raphson iterations.
-
This work presents a simple and cost-effective approach for maskless fabrication of positive-tone silicon master for the replica molding of hyperfine elastomeric channel. Positive-tone silicon masters were fabricated by a maskless fabrication technique using the combination of nanoscratch by Nanoindenter ⓡ XP and XOH wet etching. Grooves were machined on a silicon surface coated with native oxide by ductile-regime nanoscratch, and they were etched in a 20 wt% KOH solution. After the KOH etching process, positive-tone structures resulted because of the etch-mask effect of the amorphous oxide layer generated by nanoscratch. The size and shape of the positive-tone structures were controlled by varying the etching time (5, 15, 18, 20, 25, 30 min) and the normal loads (1, 5 mN) during nanoscratch. Moreover, the effects of the Berkovich tip alignment (0, 45
$^{\circ}$ ) on the deformation behavior and etching characteristic of silicon material were investigated. -
In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.
-
Numerous studies have been performed to analyze various phenomena of human's walking, gait. In the present study, unrecognized walking and recognized walking were analyzed by three dimensional motion capture system(VICON motion system Ltd., England) and simulated by computer program. Two normal males participated in measuring the motion of unrecognized and recognized walking. Six infrared cameras and four force plates were used and sixteen reflective markers were attached to the subject to capture the motion. A musculoskeletal model was generated anatomically by using ADAMS(MSC software corp., USA) and LifeMOD(Biomechanics Research Group Inc, USA). The inverse dynamic simulation and forward dynamic simulation were also performed. The result of simulation was similar to the experimental result. This study provides the base line for dynamic simulation of the falling walking. It will be useful to simulate various another pathologic gaits for old peoples.
-
Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. This research based on the experiment of sound absorption & transmission characteristics inquire into acoustic property of Micro Cellular Plastics. This experiment clarify the change of cell foaming rate for foaming time and the change of sound absorption & transmission for foaming rate.
-
Photo-induced surface alignment is charming as a non-contact photo-patternable alignment technology which can be used in the next generation of displays, such as large area, multi-domain. For decades, many polymer film have been investigated and developed to be used in the photo alignment. Among these photoreactive materials, recently developed polyimide, Chloromethylated Polyimide(CMPI) now became the focus of interests in this area because of its high photosensitivity and superior thermal stability. In this report, we present micro patterning method to form the nanoscale structure by Mask-Less laser patterning using this CMPI film and NSOM probe.
-
Recently the electrostatic 2-axis MEMS stages have been fabricated for the purpose of an application to PSD (Probebased Storage Device). However, most of them have low area efficiency, which is undesirable as data storage devices, since all of the components (springs, comb electrodes, anchors, platform, etc.) are placed in-plane. In this paper, we present a novel structure of electrostatic 2-axis MEMS stage that is characterized by having large area platform. For large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. In this article, the structures and operational principle of the MEMS stages are described, followed by design procedure, structural and modal analysis using FEM(Finite Element Method). The area efficiency of the MEMS stage was designed to be about 55%, that is very large compared with conventional ones having a few percentage.
-
Abrasive jet machining (AJM) has a large number of parameters such as powder flow rate, air pressure, diameter of abrasive, stand off distance, material hardness and fracture toughness, etc. It is not easy matter to control those parameter. To achieve high accurate machining, in this study, Taguchi method was used to select process parameters. The objective of the optimization was to get higher material removal rate (MRR). From the experiments and analysis, some process parameters were found to make efficient machining.
-
A piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearty is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearty can not be neglected. The hysteresis nonlinearty of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearty problem. And feedforward - feedback controller is proposed to give a good tracking performance. The Feedforward controller is inverse hysteresis model, Nueral network and PID control is used as a feedback controller. To show the feasibility of the proposed controller and hysteresis modeling, some experiments have been carried out. It is concluded that the proposed control scheme gives good tracking performance
-
It is clinically well known that pre-tension of wires increases the fracture stability in ring or hybrid external fixation. In some cases, additional half pin should be necessary to increase the stability when soft tissue impalement occurs during fixation. In this paper, the fracture stability of a hybrid external fixator system with different pre-tension effects and additional half-pins was analysed using FEM to investigate the effects of these pre-tension and half pin on the system stability quantitatively. 3-D finite element models of five different fixator frames were developed using by beam elements. In axial compression analysis, the fracture stiffness was increased maximally 62% as the pre-tension increased. In torsion analysis, in the other hand, there is little variations in the fracture stiffness. Additional half pin increased the system stiffness about 200 %. From the results, proper pre-tension and additional half pin would provide good methods to increase the fracture stability of the hybrid external fixator and provide more surgical options to minimize soft tissue damage at the fracture site.
-
It have been proceeded that research of analysis of extrusion process using porthole die. recently it is performed partly through the finite element method in the non steady state that design variables. The subject of this research is integrity improvement of speaker body which is being produced by porthole die extrusion in my country. Extrusion load of speaker case, and welding pressure of billet in the chamber are estimated by the means of rigid-plasticity finite element method. And then extrusion of trial was performed to estimate the validity of FE analysis.
-
The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. In general, porthole die extrusion has a great advantage in the forming that produces the hollow sections difficult to produce by conventional extrusion with a mandrel on the stem. Especially, condenser tube manufactured by porthole die belongs to sophisticated part and demands tighter dimension tolerance and higher surface finish than any other part. In order to confirm the general of porthole die extrusion, we perform the 3D FE analysis of hot porthole extrusion in non-steady state by using DEFORM 3D and investigate a pattern of elastic deformation for porthole die through the stress analysis using ANSYS 5.5 during extrusion process.
-
The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. To achieve small spot size as 1-2 nm for higher power of electron beam, magnetic lenses should be designed considering their magnetic field distribution. In this paper, the magnetic field at two condenser lenses and object lens are calculated with finite element method and discussed its performances.
-
The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.
-
In this paper, an integrated automation system of pattern design and
$CO_2$ laser cutting for diving suits is presented. Pattern design includes grading which creates a full-size range from a base pattern. Tool path for laser cutting from the patterns is generated in G-code format.$CO_2$ Laser cutting machine is developed to help cut the patterns with accuracy and speed. Aluminum profiles, ball screws, and stepping motors are engaged into the machine as frame structure, transfer unit, and driving devices respectively. The developed system is tested in dry suit cutting, convincing it can be readily introduced in driving suits manufacturing with respect to cost and efficiency. -
Recent experiments have shown the 'size effects' in micro/nano scale. But the classical plasticity theories can not predict these size dependent deformation behaviors because their constitutive models have no characteristic material length scale. The Mechanism - based Strain Gradient(MSG) plasticity is proposed to analyze the non-uniform deformation behavior in micro/nano scale. The MSG plasticity is a multi-scale analysis connecting macro-scale deformation of the Statistically Stored Dislocation(SSD) and Geometrically Necessary Dislocation(GND) to the meso-scale deformation using the strain gradient. In this research we present a study of nano-indentation by the MSG plasticity. Using W. D. Nix and H. Gao s model, the analytic solution(including depth dependence of hardness) is obtained for the nano indentation , and furthermore it validated by the experiments.
-
This research is that analysis multi-body system that have flexibility. We composed system consisted of crane, part of traveling and robot. And we analyzed the aspect of vibration when this system runs using ADAMS. Through this research we can analyze vibration and displacement of end-effect part of the large size robot. And this research can became reference that is going to analyze resemblant dynamic system.
-
This paper develops an octree-based algorithm for machining simulation. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. The supersampling method is the most common form of antialiasing and is typically used with polygon mesh rendering in computer graphics. The supersampling technique is being used to advance the efficiency of the octree algorithm..
-
To reconstruct the 3-D information of a irregular object, this paper proposes a new method applying the composition focus measure to time-series image. A focus measure function is carefully selected because a focus measure is apt to be affected by the working environment and the characteristics of an object. The proposed focus measure function combines the variance measure which is robust to noise and the Laplacian measure which, regardless of an object shape, has a good performance in calculating the focus measure. And the time-series image, which considers the object shape, is proposed in order to efficiently applying the interesting window. This method, first, divides the image frame by the window. Second, the composition focus measure function be applied to the windows, and the time-series image is constructed. Finally, the 3-D information of an object is reconstructed from the time-series images considering the object shape. The experimental results have shown that the proposed method is suitable algorithm to 3-D reconstruction of an irregular object.
-
The ophthalmic lens manufacturing processes need to extract the aspherical surface equation from the unknown surface since its real profile can be adjusted by the process variables to make the ideal curve without the optical aberration. This paper presents a procedure to get the aspherical surface equation of an aspherical ophthalmic lens. Aspherical form generally consists of the Schulz formula to describe its profile. Therefore, the base curvature, conic constant, and high-order polynomial coefficient should be set to the original design equation. To find an estimated aspherical profile, firstly lens profile is measured by a contact profiler, which has a sub-micrometer measurement resolution. A mathematical tool is based on the minimization of the error function to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the refractive power measurement is compared with the curvature distribution on the estimated aspherical surface equation
-
This paper presents the development of a new climbing mechanism for inter-block welding in Shipbuilding. The climbing mechanism is that it is career type of robot that can pass over block interval for welding of interblock in shipbuilding. The point part of mechanism is that move ballscrew. The Ballscrew`s capacity account and dynamic analysis of leg part are achieved through this paper. Force and torque analysis were achieved by simulation. This can have strong point in side of cost-cutting and welding amount of work than existent method.
-
In this study, we investigated compressive characteristics of seawater-absorbed carbon-epoxy composite under hydrostatic pressure environment. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. The results showed that the compressive elastic modulus increased about 10 % as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The modulus increased 2.3 % more as the pressure increased to 270 MPa. Fracture strength and fracture strain increased with pressure in a linear fashion. Fracture strength increased 28 % and fracture strain increased 8.5 % as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.
-
Reducing the particle size of drug materials down to submicron is an important matter in pharmaceutical industry. Cryogenic milling technology is one of the mechanical milling processes, which is mostly utilized in refining grain size of metal and ceramics at extremely low temperature environment. This technique has not been readily studied in application to medical and biotechnology. This paper, therefore, describes the application of cryogenic milling process to reduce particle size of Ibuprofen. The shape and size of the Ibuprofen particle before and after the cryogenic ball milling process were analyzed. XRD analysis was performed to examine a change in crystallinity of Ibuprofen by the cryogenic ball milling process. The results showed that the size of Ibuprofen particles was reduced to 1/10 or less of its initial size. The results also showed that the degree of crystallinity of Ibuprofen was slightly reduced after cryogenic ball milling with nitrogen
-
The purpose of this study is measured surface acoustic wave(SAW) characteristics to confirm utilization possibility as SAW sensor using new Pb(Mg
$_{1}$ 3/Nb$_{2}$ 3/)$O_3$ -PbTiO$_3$ (PMN-PT) piezoelectric substrate. We have tried to see if the material can be practically available as a new surface acoustic wave (SAW) biosensor to detect protein. The experimental results clarified that the frequency filtering of the central frequency of the PMN-PT substrate is a superior result to that of the LiTaO$_3$ (LT) substrate, but the result was not completely satisfactory. We know there is a problem in the design of inter-digital transducer (IDT) pattern. The waves transferred through the input terminal forms SAW which is sure to be transferred to the direction of the output terminal and the backward direction of the input terminal. This reflected wave is reiterated with SAW, which is transferred to the output direction, and so the frequency filtering gives a not good result. The electromechanical coupling coefficient of the PMN-PT substrate is excellent, and we can use it as a SAW sensor, in the near future, provided that there will be a new IDT design to increase the frequency filtering. -
A tactile stimulator array using stacked PZT is fabricated and evaluated in this paper. The purpose of this research is the development of a tactile stimulator to represent the obstacle information for the visually disabled. As a first step of this research, we investigate the physiological characteristics of tactile stimuli and design a tactile stimulator based on the investigated results. Also we evaluated a fabricated tactile stimulator. The prototype of tactile stimulator which has 2
$\times$ 2 tactor elements with 3mm spacing is fabricated using stacked PZT actuator. In order to evaluate the characteristics of this tactile stimulator, physiological experiments are carried out. In the experiment, the threshold of tactile stimulus intensity within a frequency range of 5-500Hz at various stimulus amplitudes are investigated. According to the obtained experimental result, the input signal of tactile stimulator for the effective transfer of obstacle information is determined. Also physiological experiments of multi-stimuli recognition such as shift and rotation are carried out -
AGV for FMS must be detected an obstacle. Therefore, many studies have been advanced, and recently, the ultra sonic sensor is used for this. However, the new method has to be developed because the ultra-sonic-sensor has many problems as a noise in factory, an directional error and detection of the obstacle size. So, we study the fast stereo vision system that can give more information to obstacles for intelligent AGV system. For this, the simulated AGV system was made with two CCD cameras in front to get the stereo images, and the threshold process by color information (intensity and chromaticity) and structure stereo matching method were constructed.
-
The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.
-
This paper describes an image processing algorithm for recognition of small-obstacles using a camera and program for a mobile robot in indoor environment. Mobile robot could meet small-obstacles such as a small plastic bottle of about 1l in quantity, a small box of 7
$\times$ 7$\times$ 7 cm$^3$ in volume, and so on in its designated path, and could be disturbed by them in the locomotion of a mobile robot. So, it is necessary to research on the image processing algorithm for recognition of small-obstacles using a camera and program. In this paper, 2-D the image processing algorithm for recognition of small-obstacles using a camera and program for a mobile robot in indoor environment was developed. The characteristic test of the developed program to confirm the recognition of small-obstacles was performed. It is shown that the developed program could recognize small-obstacles accurately. -
Diamond-Like Carbon (DLC) thin film is a semiconductor with high mechanical hardness, low friction coefficient, high chemical inertness, and optical transparency. DLC thin films have widespread applications as protective coatings and solid lubricant coatings in areas such as Hard Disk Drive (HDD) and Micro-Electro-Mechanical-Systems (MEMS). In this work, the wear characteristics of DLC thin films deposited on silicon substrates using a DC-magnetron sputtering system were analyzed. The wear tracks were measured with an Atomic Force Microscope (AFM). To identify the sp2 and sp3 hybridization of carbon bonds and other bonds Raman spectroscopy was used. The structural information of DLC thin films was obtained with Fourier transform infrared spectroscopy and wear tests were conducted by using a micro-pin-on-reciprocator tester. Results showed that the wear characteristics were dependent on the sputtering conditions. The wear rate could be correlated with the bonding state of the DLC thin film.
-
In this paper, a NURBS surface interpolator is proposed which can deal with shapes defined from CAD/CAM programs on a surface basis and can improve contour accuracy. The proposed interpolator is based on newly defined G-codes and includes online tool-path planning suitable for NURBS surface machining. The real-time interpolation algorithm, considering an effective machining method for each machining process and minimum machining time, is executed in an online manner. The proposed interpolator is implemented on a PC-based 3-axis CNC milling system and evaluated through actual machining in terms of machining time and regulation of feedrate and cutting force in comparison with the existing method.
-
In this paper, a magnet-type automatic pipe cutting machine that binds itself to the surface of the pipe using magnetic force and executes unmanned cutting process is proposed. During pipe cutting process when the machine moves around the pipe laid vertical to the gravitational field, the gravity acting on the pipe cutting machine widely varies as the position of the machine varies. That is, with same driving force from the driving motor the cutting machine moves faster when it climbs down the surface of the pipe and moves slower when it climbs up to the top of the pipe. To maintain a constant velocity of the pipe cutting machine and improve the cutting quality, the authors adopted a conventional PID controller with a feedforward effort designed based on the encoder measurement of the driving motor. It is, however, impossible for the encoder at the motor to measure the absolute position and consequently the absolute velocity of the cutting machine in the case where the slip between the surface of the pipe and wheel of the cutting machine is not negligible. As an attempt to obtain a better estimation of the absolution angular position/velocity of the machine the authors proposes the use of the MEMS-type accelerometer which can measure static acceleration as well as dynamic acceleration. The estimated angular velocity of the cutting machine using the MEMS-type accelerometer measurement is experimentally obtained and it indicates the significant slipping of the machine during the cutting process.
-
The behavior of fatigue delamination in a GLARE(Glass Fiber Reinforced Metal Laminates) under fatigue loading conditions investigated. The behavior of fatigue delamination was examined basing on investigation of the crack and delamination using a SAM (Scanning Acoustic Microscope). The crack and delamination behavior on the relationship among a-N, SAM images and crack length-delamination length were considered. The test results indicated the features of different fatigue delamination and crack growth according to each fiber orientation angle and also obtained to more increase delamination than crack through the relationship between crack length and delamination length in GLARE.
-
Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.
-
In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.
-
The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as
$CO_2$ ,$N_2$ . As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process. -
A new, commercially available polishing process called magnetorheological finishing is used to polish and figure precision optics. To understand and model this process correctly it is important to determine the mechanical properties of the fluid under the influence of the magnetic field. Magnetorheological (MR) fluids are commonly modeled as Bingham fluids, so one of the essential properties to measure is the yield stress. Since MR fluids are inherently anisotropic, the yield stress will depend on the mutual orientation of the magnetic field and the direction of deformation. The relative orientation of the field and deformation in polishing does not coincide with common rheological setups, so a new rheometer has been designed and tested. This new magnetorheometer design has been shown to give correct stresses during calibration experiments using Newtonian fluids with a known viscosity. The measured stress has also been shown to have a magnitude consistent with published finite element approximations for magnetic fluids. The design of the instrument was complicated because of the requirements imposed upon the magnetic field, and the difficulty in satisfying the no slip boundary condition. Our results show the importance of having a homogeneous field in the test region during measurements. The solutions to these problems and discussion of the measurements on nonmagnetic and magnetic fluids are given.
-
This paper describes the fabrication method for atomic force microscopy(AFM) tip with multi-walled carbon nanotube(MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which cause the dielectrophoresis was used for alignment and deposition of CNTs in this research. By dropping the MWNT solution and applying an electric field between an AFM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the AFM tips due to the attraction by the dielectrophoretic force. In this case, we investigate the effect of the angle between a tip axis and an electrode. Experimental setup were presented, and then CNT attached AFM tips are successfully shown in this paper.
-
This paper attempts to compensate the nonlinearity between the input voltage and the output displacement of the piezoelectric stack in dynamic actuation by the following two ways. Firstly, the charge steering by circuit configuration reduces the hysteresis of piezoelectric actuator remarkably. However, it makes the ripple in positioning due to the phase lag and noise induced from the elements of the long closed loop. Secondly, the feedforward control by neural network compensates the hysteresis of the piezoelectric actuators effectively with the appropriate selection of the input variables for the training. The improvement of the dynamic performance of the piezoelectric actuators by the developed linearization technique is verified by experiments.
-
This study focused on the effect of autonomic microcapsules on the mechanical properties of structural material. Several types of microcapsules with healing agents were manufactured by varying agitation speed of high speed stirrer. The size distribution of microcapsules was measured by a particle size analzer. The epoxy specimens embedded with microcapsules were manufactured and the degree of cure of such epoxy specimen was measured by a differential scanning calorimetry. The tensile modulus and tensile strength in epoxy specimens embedded with microcapsules were evaluated in order to investigate the effects of microcapsules on mechanical properties of structural materials. The configuration of microcapsules and morphology of fracture surfaces for the epoxy specimen were examined by an optical microcope and a scanning electron microscope. According to the results, tensile strength of the epoxy specimen embedded with microcapsules was indicated a little reduction, but tensile modulus was not much affected on microcapsules.
-
As the optical communication industry is developed, the demand of optical communication part is increasing. ZrO
$_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general ZrO$_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. This paper deals with the analysis of the process parameters such as grinding wheel speed, grinding feedrate and regulating wheel speed as influential factors, on the concentricity and surface finish developed based on Taguchi's experimental design methods. Taguchi s tools such as orthogonal array, signal-to-noise ratio, factor effect analysis, etc. have been used for this purpose optimal condition has been found out. Thus, if possible be finding highly efficient and quality grinding conditions. -
In this work, a novel spherical 3-dof parallel mechanism is proposed and analyzed. The mechanism consists of three RRPS serial subchains and an additional passive 3-dof type serial subchain. Three RRPS serial subchains alone may form a structure of 6-DOF Stewart Platform mechanism. However, in the proposed mechanism, an additional passive serial subchain acts as constraints to restrict the output motion of the mechanism within 3-DOF spherical space. The closed form solutions of position analysis of the proposed mechanism and its first-order kinematic model are derived. Then its workspace size and kinematic characteristics are examined via kinematic isotropic index.
-
A novel translational 3-dof parallel mechanism is proposed and analyzed. The mechanism consists of three RRPS serial subchains and an additional passive 3-dof type serial subchain. Three RRPS serial subchains alone may form a structure of the 6-DOF Stewart Platform mechanism. However, in the proposed mechanism, an additional passive serial subchain acts as constraints to restrict the output motion of the mechanism in 3-DOF translational space. The closed form position solutions of the proposed mechanism and its first-order kinematic model are derived. Then its workspace size and kinematic characteristics are examined via kinematic isotropic index.
-
In this paper a servo-system is developed to improve straightness of linear motor stages. When a linear motor stage is used for high-precision linear motion systems, high precision straightness accuracy is necessary to meet the required position accuracy. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to the friction, a sliding mode control is applied. The effectiveness of the suggested mechanism and the control performance are illustrated along with some experimental results.
-
Machinble Ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. Lapping used diamond slurry and lapping by in-process electrolytic dressing is developed to solve this problem. On this paper, a comparative study of processing ability of lapping used diamond slurry and lapping by in-process electrolytic dressing.
-
The molding characteristics of large-sized orthogonal stiffened plastic plates were investigated in the present study. Models with the geometry of 1800
$\times$ 600$\times$ 12mm and 1200$\times$ 600$\times$ 12mm were designed for injection molding(IM) and injection-compression molding(ICM), respectively. To determine a mold system and reduce the warpage of the presented model after molding process, IM and ICM analyses using MOLDFLOW$^{TM}$ were performed. Also, the experiments were performed to verify the suggested mold system. It was shown that the change of molding method could significant effect on the warpage of designed model.l. -
Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of
${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit. -
The reliability issue of the probe tip/recording media interface is one of the most crucial concerns in the Atomic Force Microscope (AFM)-based recording technology. In this work, the tribological characteristics of the probe/media interface were investigated by performing wear tests using an AFM. The ranges of applied normal load and sliding velocity for the wear test were 10 to 50nN and 2 to 20
$\mu$ m/s respectively. The damage of the probe tip was quantitatively as well as qualitatively characterized by Field Emission Scanning Probe Microscope (FESEM) analysis and calculated based on Archard s wear equation. It was shown that the wear coefficient of the probe tip was in the order of 10$^{-4}$ ~ 10$^{-3}$ , and significant contamination at the end of the probe tip was observed. Thus in order to implement the AFM-based recording technology, tribological optimization of the probe/media interface must be achieved. -
This study was aimed to verify the acceptable contact force between power collector and 3rd rail type conductor rail for the Korean standardized rubber-tired AGT light rail vehicle. The power collector was designed and manufactured to satisfy the Korean standardized Specifications of the rubber-tired AGT light rail vehicle. Based on the dynamic behavior, contact force variation and interruption in the worst installation tolerance of the conductor rail, its initial contact force was set up. With rotary disk type equivalent test apparatus with circular conductor rail, the interruptions were measured. As the results, acceptable contact force was proposed to ensure power collection stability.
-
Invar is a compound metal of Fe-Ni system and contain 36% Ni. The most distinction characteristic of Invar is the coefficient of thermal expansion is 1.0 10
$^{-6}$ /$^{\circ}C$ . That is a tenth of general steel material. This low thermal expansion characteristic of Invar is applied to the missile, aircraft, monitor CRT and frontier display's shadow mask such as FED and OLED. The usage of the Invar shadow mask for display is increasing due to the requirement of larger size and flatness monitor. The Invar shadow mask is machined by two ways electro-forming and laser now. However the electro-forming takes a too long time and the laser machining is accompanied with Burr. In this study, PEMM(pulse electrochemical micro machining) is conducted to machine the micro hole to the Invar and 80${\mu}{\textrm}{m}$ hole was machined. -
In the manufacture of integrated circuits, photolithography is the lowest yield step in present production lines. Electron beams form a powerful set of tools with which to attack this problem. Electron beams can be used to make patterns that are smaller than can a photolithography. We design a high voltage generator of electron beam manufacturing system. For this purpose, first, the configuration of electron beam manufacturing system was analyzed. Second, the basic configuration of a high voltage generator and test results were presented.
-
This paper presents an efficient 5-axis roughing method for centrifugal impeller. The efficient roughing is minimization of cutting time through minimizing tool tilting & rotating motions. Roughing tool path plan consists of the three steps. First, machining areas are divided into sub cutting regions using ruling lines. The biggest tool diameter is, then, determined for each region. Finally, tool paths are generated after fixing the tilting and rotating axis of 5-axis machine. Experimental results showed that the proposed roughing plan considering the divided machining regions is more efficient than the conventional methods.
-
Since the 1990s, the advancement of semiconductor technology has resulted in the development of microprocessor technology, auxiliary computer technology, and application technology such as intelligent algorithms (neural network, fuzzy, etc.). These based the development of intelligent machines. An agent is autonomous software that recognizes environment, exchanges knowledge with other agents and makes decisions. We designed agent-based sensor structure. For the purpose, first, it modeled the function of an intelligent machine. Second, it designed sensory function on the agent level.
-
Recently, using GPS and equipment that recognizes the position of the car such a computer system inside the car are very universalized. Specially, the technique that diagnoses troubles and prevents troubles through scanning engine ECU is very popularized also. However, because these data have to be directly transferred and received from the car, in cases of traffic accident such as serious damage or car theft, it is impossible to receive the data at the time of accident. In order to receive and preserve the data safely regardless of these situations, it is possible to provide data for analyzing reasons of accident and prevent accidents from occurring by using wireless communication to receive the transferred information of the car, then saving into a Database system DB, or grasping the situation of the car and the driving pattern of drivers through analyzing stored data. Moreover, due to developing some related services such as providing the information about the real time of the accident, diagnoses of the car and alarms, etc. It is expected to contribute to creating added values.
-
In the present study, an evaluation technology for heating channel layout was investigated in SMC molding system design. Conventional design rules of cooling channel in injection molding process were applied to the present work. Finite element thermal analysis with ANSYSTM was performed to evaluate the temperature distribution of mold surface. SMC mold was manufactured to test the effect of a proposed heating channel layout system on the temperature distribution of mold surface and infrared camera was applied to a measurement of temperature. It was shown that infrared camera application was possible in a measurement of temperature distribution on mold surface.
-
This paper deals with the algorithm development that inspects defects such as Lens Focus, Black Defect, Dim Defect, Color Defect, White Balance, and Line Defect caused by the process of Compact Camera Module (CCM). These days the demand of CCM goes on increasing in various types like PDA, a cellular phone and PC camera every year. However, owing to the defect inspection of CCM by the semiskilled work the average inspection time of CCM takes about 40 to 50 seconds. As time goes by the efficiency takes a sudden turn for the worse because workers must inspect with seeing a monitor directly. In this paper, to solve these problems, we developed the imaging processing algorithm to inspect the defects in captured image of assembled CCM. The performances of the developed inspection system and its algorithm are tested on many samples. Experimental results reveal that the proposed system can focus the lens of CCM within 5s and we can recognize various types of defect of CCM modules with good accuracy and high speed.
-
The shape and size variations of the nanopatterns produced on a positive photoresist using a near-field scanning optical microscope(NSOM) are investigated with respect to the process variables. A cantilever type nanoprobe having a 100nm aperture at the apex of the pyramidal tip is used with the NSOM and a He-Cd laser at a wavelength of 442nm as the illumination source. Patterning characteristics are examined for different laser beam power at the entrance side of the aperture(
$P_{in}$ ), scan speed of the piezo stage(V), repeated scanning over the same pattern, and operation modes of the NSOM(DC and AC modes). The pattern size remained almost the same for equal linear energy density. Pattern size decreased for lower laser beam power and greater scan speed, leading to a minimum pattern width of around 50nm at$P_{in}$ =1.2$\mu$ W and V=12$\mu$ m/. Direct writing of an arbitrary pattern with a line width of about 150nm was demonstrated to verify the feasibility of this technique for nanomask fabrication. Application on high-density data storage using azopolymer is discussed at the end. -
The robotic
$CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic$CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic$CO_2$ welding. To achieve this above objective, Taguchi method was employed using five different process parameters (tip gap, gas flow rate, welding speed, arc current, welding voltage) as a guide for optimization of process parameters. -
UAV (Unmanned Aerial Vehicle) is an aerial vehicle that can accomplish the mission without pilot. UAV was developed for a military purpose such as a reconnaissance in an early stage. Nowadays usage of UAV expands into a various field of civil industry such as a drawing a map, broadcasting, observation of environment. These UAV, need vision system to offer accurate information to person who manages on ground and to control the UAV itself. Especially LOS(Line-of-Sight) system wants to precisely control direction of system which wants to tracking object using vision sensor like an CCD camera, so it is very important in vision system. In this paper, we propose a method to recognize object from image which is acquired from camera mounted on gimbals and offer information of displacement between center of monitor and center of object.
-
In this paper, an efficient method is proposed to analyze the radial error of a miniaturized-high speed spindle system. Initially, a device is constructed for measuring the radial error motion using capacitance sensors. The capacitance sensors are placed perpendicular to the axis of the shaft and at 90o to each other. The spindle is rotated at high speed and the profile of the spindle is recorded. An algorithm is developed for analyzing the spindle data and determining the radial error of spindle. The present algorithm uses homogeneous transform matrix (HTM) method and iterative process for determining the radial error. The analysis procedure is performed for different speeds of the spindle. The data obtained from the present system and the results of evaluation are also presented in this paper. It is observed that this method is effective in determining and analyzing the spindle errors for high speed miniaturized spindle.
-
On this study, electrochemical polishing is adapted to ultra-fine surface for semiconductor large radius gas-tube. The system which buffing and electrochemical polishing can be performed simultaneously was constructed in connection with developing exclusive system. Based on existing papers and the research of background, electrode gap and electrolyte flow were fixed. Current density and electrochemical precision time were chosen as variables. On this study, it is objected to find optimal precision condition and precision variables on the in-process electrochemical polishing.
-
The construction industry is typical of the ' job of 3D ', the automated construction equipments are getting used in the domestic construction sites and the construction robots began to be sold in the abroad. The research developed the small sized robot which could be used at the apartments and the office buildings with the small floors. But the past finishing robot could not be operated easily, it had expensive controller which could not increase the production of robot. In this paper, user interface is made to operate easily the small concrete floor finishing robot with two trowel which has low cost controller, motion algorithm including modeling and mechanism about the concrete finishing robot is developed to control moving. Simulation and experiment figure out how the finishing robot moves and will contribute to realizing it.lizing it.
-
Compressors in Large Multi-room air conditioning system are often driven by gas heat pumps. The advantages of GHP are their high level of heating performance and low cost because they use the LNG fuel to drive engine. We developed engine control system. The developed system controls engine speed based on proportional, integral and derivative (PID) method. This controller is designed to eliminate the need for continuous operator attention on engine revolution control. The control system includes 4 spark coil drivers, fuel drivers and relay drivers to make engine's operating more stable. The experiments of control engine revolution of this system are based on the various load conditions.
-
The CMP monitoring system was newly developed by the aid of friction force measurement, resulting from installation of piezoelectric quartz sensor on R&D polisher. The correlation between friction and CMP results was investigated in terms of tribological aspects by using the monitoring system. Various friction signals were monitored and analyzed by the change of experimental conditions such as pressure, velocity, pad and slurry. First of all, the lubrication regimes were classified with Sommerfeld Number through measuring coefficient of friction in ILD CMP. And then, the removal mechanism of abrasives could be understood through the correlation with removal rate and coefficient of friction. Especially, the amount of material removal per unit sliding distance is directly proportional to the friction force. The uniformity of CMP performances was also deteriorated as coefficient of friction increased.
-
Recently, the self-healing technique is being investigated to repair the damaged polymeric composites by the use of microcapsules with the healing agent. This technique can obtains both the damage detection and the damage repair simultaneously over the converntional repairing techniques. In this study, the effects of the catalyst ratio to the healing agent and thermal characteristics to the mixtures of healing agent are investigated through single lap shear tests and DSC. The Healing agents such as DCPD, ENB, and their mixtures are considered and Grubb's catalyst is used as a catalst.
-
Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).
-
This paper presents a Split Hopkinson Pressure Bar(SHPB) technique to obtain compressive stress-strain data for rubber materials. An experimental technique that modifies the conventional Split Hopkinson Pressure Bar(SHPB) has been developed for measuring the compressive stress-strain responses of materials with low mechanical impedance and low compressive strengths such as rubber. This paper introduces an all-polymeric pressure bar which achieves a closer impedance match between the pressure bar and the specimen materials. In addition, we are a pulse shaper to lengthen the rising time of the incident wave to ensure stress equilibrium and homogeneous deformation of a rubber materials. It is found that the modified technique can be determine the dynamic deformation behavior of an NBR rubber more accurately.
-
소형화된 기계가공시스템은 사용재료의 다양화와 에너지 및 공간의 감소와 같은 장점을 가지고 작고 정밀한 부품을 가공할 수 있는 시스템으로 주목받고 있다. 이러한 시스템이 비록 그 크기가 일반적인 가공시스템에 비해 작지만 정렬 및 조립공정, 기계요소의 불완정성에 의한 기하학적 오차는 여전히 존재한다. 기하학적 오차 평가는 기계시스템의 정밀도를 효과적으로 적은 비용으로 향상시킬 수 있는 오차보정기술을 적용할 수 있는 토대가 된다. 일반적으로, 3 축의 직선축으로 이루어진 공작기계는 21 개의 오차요소를 가진다. 레이져간섭계는 이러한 오차요소를 평가하는데 널리 사용되고 있지만 광학계를 정렬하고 설치하는 데 많은 어려움이 있으며 한번의 설치로 한 개의 오차요소만이 측정 가능하다. 또한, 소형공작기계의 경우, 그 크기로 인해 기존의 레이져 간섭계를 직접적으로 적용할 수 없다. 따라서, 본 연구에서는 소형공작기계를 포함한 소형가공시스템의 기하학적 오차 평가를 위한 새로운 다자유도 측정시스템을 제안하였다. 5 개의 정전용량변위센서를 사용하는 이 시스템을 통해 한 축의 움직임에 따른 5 개의 오차요소를 동시에 측정 가능하다. 균질 변환행렬을 이용한 측정알고리듬을 구성하고 이를 모의시험을 통해 평가하였다. 수학적 모델링을 통해 각 센서의 출력값을 유도하고 이를 이용하여 각 오차요소를 계산하기 위한 식을 유도하였다. 여기서, 단순화된 식을 적용한 경우, 임의의 오차에 대한 측정 알고리듬의 정확도를 평가하였다. 또한, 측정 시스템의 설치시 발생하는 셋업오차에 대한 측정 알고리듬의 민감도 분석을 행하였다. 제안하는 측정 시스템은 구조가 간단하고 고가의 부가장비가 필요치 않다. 또한, 적은 비용으로 구성할 수 있으며 높은 측정 정밀도를 가지고 소형가공시스템에 필요한 오차 평가를 행할 수 있다.가 함유된 계란을 생산하고 섭취하였을 때 특정항체들의 결합을 통해 병원성 미생물의 성장이나 군체를 형성하는 것을 무력화시켜 결과적으로 병원균을 감소시키거나 억제시킨다는 점이다. 오늘날 약물에 내성을 지닌 박테리아의 출현으로 질병감염을 막는데 항생제의 사용효과가 점차 감소하고 있기 때문에 이러한 항생제를 대체할 수 있는 방안으로 계란항체를 이용할 수 있다.한 중공 플랜지 형상의 단조 방법 중 보다 적절한 단조방법인 압조 단조에 있어서 일반적으로 사용되고 있는 SM10C에 대한 유한요소 해석을 수행하였으며, 제품의 형상비에 따라 폴딩 결함의 발생 유무를 검토하고, 폴딩 결함 없이 단조하기 위한 중공 플랜지의 형상한계 비를 제시하였다.도 경미하게 나타났으나, 경련이 나타난 쥐에서는 KA만을 투여한 흰쥐와 구별되지 않았다. 이상의 APT의 항산화 효과는 KA로 인한 뇌세포 변성 개선에 중요한 인자로 작용할 것으로 사료되나, 보다 명확한 APT의 기전을 검색하고 직접 임상에 응응하기 위하여는 보다 다양한 실험 조건이 보완되어야 찰 것으로 생각된다. 항우울약들의 항혈소판작용은 PKC-기질인 41-43 kD와 20 kD의 인산화를 억제함에 기인되는 것으로 사료된다.다. 것으로 사료된다.다.바와 같이 MCl에서 작은 Dv 값을 갖는데, 이것은 CdCl
$_{4}$ $^{2-}$ 착이온을 형성하거나 ZnCl$_{4}$ $^{2-}$ , ZnCl$_{3}$ $^{-}$ 같은 이온과 MgCl$^{+}$ , MgCl$_{2}$ 같은 이온종을 형성하기 때문인것 같다. 한편 어떠한 용리액에서던지 NH$_{4}$ $^{+}$ 의 경 -
Optical add/drop multiplexers (OADMs), one of the new network elements, will play a key role enabling greater connectivity and flexibility in the dense wavelength-division multiplexing (DWDM) networks. The importance of OADMs is that they allow the optical network to be local transmitting/extraction on a wavelength-by-wavelength basis to optimize traffic, efficient network utilization, network growth, and to enhance network flexibility. Also, the automatic assembly system of micro optical filters and fibers is a key technology in the development of optical modules with high functionality. Recently, one of remarkable tends in the development of optical communication industry is the miniaturization and integration of products. In this research, we have developed a system capable of automatic alignment of a film filter and a lensed fiber in order to improve the speed and losses in the optical fiber to filter alignment of optical modules. Using the developed automatic alignment system and silicon optical benches, we have fabricated the micro OADM and measured the insertion loss and aging effect.
-
Biped robot has better mobility than other mobile robot, but it is hard to maintain balance during walking. In order to maintain balance, stability analysis is a key point for a biped robot. The zero moment point analysis has been used most in stability analysis. In this paper, we propose different method of stability analysis using wrench system. It is possible to generate a wrench system by applying a force along an axis in space and simultaneously applying a moment about the same axis. Wrench system is equivalent to a force and moment applied along the same axis. We compare the result of wrench system analysis with that of zero moment analysis in biped robot stability using simulation program.
-
In gear-train design, power-flow analysis is a very important process. The method for power-flow analysis apply the power balance equation and torque balance equation to each fundamental circuit. Then, the equation are solved simultaneously to determine the power-flow in planetary gear train. In this paper we perform power-flow analysis of a 6-speed automatic transmission. With this results are used to represent block diagram. In addition, the efficiencies of epicyclic inversion of the 6-speed automatic transmission is obtained.
-
As the demand for traceable calibrations of torque measuring devices has considerably increased both in the production sector and in research institutes, suitable standard machines had to be developed at the Korea Research Institute of Standards and Science. Owing to its special design, the small uncertainty of measurement required for the realization of the static torque can be reached (relative uncertainty of measurement < 5
$\times$ 10$^{-5}$ in the measurement range between 500 and 2000 Nm, and < 1$\times$ 10$^{-4}$ in the measurement range from 10 to 500 Nm). The relative discrepancy between our torque calibration results of 2 kNm and PTB s (Physikalisch Technische Bundesanstalt, Germany) results was less than 2$\times$ 10$^{-5}$ , which confirming our uncertainty estimation. -
Recently in the automotive industries, light and high quality material is strongly required because of emissions regulation issues. In the electromagnetic stirring process, it has many merits that are the exact control ability about material processing and a good point of the protection of environment. In this paper, the morphology of the change of primary Al phase in A356 alloy by electro magnetic stirrer was investigated to obtain the globular structure. The parameters are the current, stirring time, pouring temperature and cooling rate of different wall thickness; 5mm, 15mm, 25mm respectively. By proper selection of the processing parameters, globular primary particles can be obtained by electromagnetic stirrer.
-
The semi-solid processing is now becoming of great interest for the production of various parts by pressure die casting. Also, the rheolory casting has been substituted for thixo casting, because the rheology casting can control the solid particles to globular and non-dendritic solid phase. In the rheology casting process, the important thing is to control the solid particles behavior in semi-solid materials. So in this paper, to control solid particles behavior in semi-solid materials, we experimented about the die filling during the semi-solid die casting in 0.3, 0.4, 0.5, 0,6 solid fraction. The die filling in semi-solid die casting were simulated by MAGMAsoft/thixo module. By the die filling tests and computer simulation, the effect of solid particles behavior in rheology flow had been investigated.
-
The mechanics of the dendrite fragmentation is a very important aspect of grain refinement in rheocasting. In this work, the stress field of the dendrite stirred in the semisolid slurry was simulated by Metlab 6.0 software. The result shows that stress concentration at the root of the dendrite arms is great enough to cause plastic deformation though the agitation is moderate. Accordingly, dendrite fragmentation was suggested to be caused by fractured after fatigue erosion.
-
In this paper, measuring system of 5 DOF motion errors are proposed using two capacitive type sensor, a straight edge and a laser interfoerometer. Yawing error and pitching error are measured using the laser interferometer, and rolling error is measured by the reversal method using a capacitive type sensor. Linear motion errors of horizontal and vertical direction are measured using the sequential two point method. In this case, influence of angular motion errors is compensated using the previously measured angular motion errors. In the horizontal direction, measuring accuracy is within 0.05
$\mu$ m and 0.27 arcsec, and in the vertical direction, it is within 0.15$\mu$ m and 0.5 arcsec. From these results, it is confirmed that the proposed measureing system is very effective to the measurement of 5 DOF motion errors in the ultra precision feed tables. -
This study investigates the buckling evaluation of connecting rods used in the diesel engine through finite element analysis. The Rankine formula, which is modified from classical Euler‘s formula, has been widely accepted in automotive industry to evaluate the buckling of connecting rods. Apparently, this formula is most suitable for the straight and idealized rod shape, and over-simplifies the geometric complexity associated with connecting rods. The subspace iteration method in FEA is used to predict the critical buckling stress of a connecting rod with certain slenderness ratio. To create models with various slenderness ratios for shank portion in the rod, the automatic meshing preprocessor was implemented. Results from FEA were verified by the experiments, in which the embedded strain gages measured for the connecting rod running at 4000rpm. The result indicates that the buckling prediction curve through FEA and experiment is effectively different from the curve of classical Rankine formula.
-
A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy
$n^{ⓡ}$ . The slippage obtained by the simulation is compared to experimental results.ults. -
As the demands of X-Y linear motors increase, it becomes very important to measure flatness errors and to compensate them. In this study, in order to investigate flatness errors, a laser interferometer is used for measurement. To improve the measurement efficiency, a Union Jack method is adopted instead of a square method. The square method is frequently used because of its accuracy, but it requires many measurement points. In this study, the Union Jack method with Grey Theory is used. By using the Grey Theory, unmeasured data are predicted, and these are compared with results of the square method. The results show that the Union Jack method with Grey Theory is accurate enough to replace the square method.
-
A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3-D data of an object was calculated from the 2dimensional image information obtained by the laser stripe using the laser triangulation. The system can measure the diameter of hole not only in a normal plane but also in an incline plane. We can experiment with magnification that is optimized according to size of object using zoom lens. In this paper, the theoretical formula and calibration of the system were described. The measuring precision of the system was investigated by experiment.
-
A side scan sonar system uses the towfish installed sonars, It is an equipment that search images of the bottom surface of the sea in real time. It is a typical equipment that is related to a sea investigation such as a geological survey, seabed communication cable and power line cable placing repair investigation, fish breeding ground investigation, sea purification, relic and mineral investigation, and mine and submarine search. It used to fined objects and investigate on the seabed surface. But, recently, it is used to sea purification and geological survey that require information of the correct surface of the seabed. So, it needs various filtering technique and image processing techniques development to acquire high resolution image. therefore, this research develops a side scan sonar using multi-beam sensors that supply various information with the fast scan speed and correct high resolution that is not a simple underwater investigation equipment.
-
A reliability analysis and design procedure based on the design of experiment (DOE) is combined with the response surface method (RSM) for numerical efficiency. The procedure established is based on a 3
$^n$ full factorial DOE for numerical quadrature using explicit formula of optimum levels and weights derived for general distributions. The full factorial moment method (FFMM) shows good performance in terms of accuracy and ability to treat non-normally distributed random variables. But, the FFMM becomes very inefficient because the number of function evaluation required increases exponentially as the number of random variables considered increases. To enhance the efficiency, the response surface moment method (RSMM) is proposed. In RSMM, experiments only with high probability are conducted and the rest of data are complemented by a quadratic response surface approximation without mixed terms. The response surface is updated by conducting experiments one by one until the value of failure probability is converged. It is calculated using the Pearson system and the four statistical moments obtained from the experimental data. A measure for checking the relative importance of an experimental point is proposed and named as influence index. During the update of response surface, mixed terms can be added into the formulation. -
The RMD(Rehabilitation Medicine Device) with CJM(Compound Joint Motion) is the lower limb unit muscular strengthening promotion rehabilitation medicine device for patients of joint orthopedic operation or the deficient elder of ability to walk, the handicapped. Since the products for the rehabilitation medicine device have limited to the simplicity linear motion, those do not give efficient the lower unit muscular strengthening effects. This device which was under the development gives to exercise of hip joint and knee joint with user's selection at once, get out of the simplicity linear motion. Also it will be contributed to a field of rehabilitation medicine and a mobility aid technology of the deficient elders of ability to walk, the handicapped.
-
Characteristics of laser-assisted wet etching of titanium in phosphoric acid were investigated to examine the feasibility of this method for fabrication of high aspect ratio microchannels. Laser power, number of scans, etchant concentration, position of beam waist and scanning speed were taken into consideration as the major process parameters exerting the temperature distribution and the cross sectional profile of etched channels. Experimental results indicated that laser power influences on both etch width and depth while number of scans and scanning speed mainly affect on the etch depth. At a low etchant concentration, the cross sectional profile of an etched channel becomes a U-shape but it gradually turns into a V-shape as the concentration increases. On the other hand, surface of the laser beam focus with respect to the sample surface is found to be a key factor determining the bubble dynamics and thus the process stability. It is demonstrated that metallic microchannels with different cross sectional profiles can be fabricated by properly controlling the process parameters. Microchannels of aspect ratio up to 8 with the width and depth ranges of 8∼32 m and 50∼300 m, respectively, were fabricated.
-
Controlling the cure depth of the Fa1260T photopolymer enhances the quality of a microstructure and minimizes its size in microstereolithography. In this work, variation of cure depth of the Fa1260T photopolymer is investigated while the concentration of a photopolymerization inhibitor as a radical quencher was varied. The energy source inducing photopolymerization was a He-Cd laser and a motorized stage controled the laser beam path accurately. The effects of process variables such as laser beam power and scan speed on the cure depth were examined. Optimum conditions for the minimum cure depth were determined as laser power of 230 W and scan speed of 40-50 m/s at the concentration of the radical quencher of 5%. The minimum cure depth at the optimal condition was 14 m. The feasibility of the fabrication of microstructures such as a microcup, microfunnel, and microgrid of 100 m size is demonstrated using Super IH process.
-
Lever mechanisms are usually employed to enlarge output displacement in precision stages. In this study, theoretical analysis of a lever is presented including bending effect and relation between dimension parameters and an objective function. The objective function is chosen as multiplication of magnification ratio and forcedisplacement transmission. Through theoretical analysis, this study presents optimal values for the parameters and the analysis is verified by finite element method.
-
In this study, the effect of mode II by variation of multilevel loading direction was experimentally investigated in the fatigue crack propagation behavior. To generate mixed-mode I+II loading state, the compact tension shear(CTS) specimen and loading device were used in this tests. The experimental method divided into three steps and three cases that were step I(0
$^{\circ}$ ), step II(30$^{\circ}$ , 60$^{\circ}$ , 90$^{\circ}$ ),step III(0$^{\circ}$ ) and case I(0$^{\circ}$ ⇒ 30$^{\circ}$ ⇒ 0$^{\circ}$ ), case II(0$^{\circ}$ ⇒ 60$^{\circ}$ ⇒ 0$^{\circ}$ ), case III(0$^{\circ}$ ⇒ 90$^{\circ}$ ⇒ 0$^{\circ}$ ). The result of test, the step II affected to the step III in the all case. Specially, The fatigue crack propagation rate was faster and the fatigue life was smaller than of mixed mode I+II(30$^{\circ}$ ,60$^{\circ}$ ) due to the effect of mode II in the step III of the case III -
An experimental and numerical approach has been carried out for to see the noise characteristics of a circular diamond saw. The noise level measurement result for the several kinds of shanks shows us that the noise level reduction in high frequency range could be an effective way to control the noise problem. Sandwich type shank whose center part is laminated with a low Young‘s modulus material greatly reduces the noise level. The noise level for the shank where several curve shaped slits are provided in the circumferential direction is reduced considerably too. The response spectrum analysis by the FEM shows us to be an alternative for predicting the noise characteristics of the shank.
-
Actual trends in automotive industry lead to an increase use of lightweight structures imposing the need for high strength aluminum alloys with complex shape. In the electromagnetic stirring process, it has many merits which are the exact control ability about material processing and a good point of the protection of environment comparison with the mechanical stirring. The interface of cells consisting of primary particle formed by the electromagnetic stirring due to particle regrowth during cooling the alloy. By electromagnetic stirring process, the microstructure of material has a good point, also it can control the material processing exactly.
-
A mobile robot system is developed which is remotely controlled by a haptic master called ‘PHANTOM’. The mobile robot has 4 ultrasonic sensors and single CCD camera which detects the distance from a mobile robot to obstacles in the environment and sends this information to a haptic master. For more convenient remote control, haptic rendering process is performed like viscosity forces and obstacle avoidance forces. In order to show the effectiveness of the developed system, we experiment that the mobile robot runs through the maze and the time is checked to complete the path of the maze with/without the haptic information. Through this repeated experiments, haptic information proves to be useful for remote control of a mobile robot.
-
If a personal robot is popularized like a personal computer in the future, many kinds of robots will appear and the number of manufacturers will increase as a matter of course. In such circumstances, it can be inefficient, in case each manufacturer makes a whole platform individually. The solutions for this problem are to modularize a robot component (hardware and software) functionally and to standardize each module. Each module is developed and sold by each special maker and a consumer purchases desired modules and integrates them. The standardization of a module includes the unification of electrical and mechanical interface. In this paper, the standard interfaces of modules are proposed and CMR(Component Modularized Robot)-P2 made with the modules(brain, sensor, mobile, arm) is introduced. In order to simplify and to make the modules light, a frame is used for supporting a robot and communication/power lines. The name of a method and the way to use that are defined dependently on the standard interfaces in order to use a module in other modules. Each module consists of a distributed object and that can be implemented in the random language and platform. The sensor, mobile and arm modules are developed on Pentium or ARM CPU and embedded Linux OS using the C programming language. The brain module is developed on Pentium CPU and Windows OS using the C, C++ and RPL(Robot Programming Language). Also tasks like pass planning, localization, moving, object perception and face perception are developed. In our test, modules got into gear and CMR-P2 executed various scenarios like guidance, errand and guarding completely.
-
Demands for higher productivity in container terminal environments continues to escalate consideration of equipment upgrades. And then transportation of containers using the automated container crane becomes more and more important for productivity enhancements. Introducing a hybrid control architecture to the container crane, it provides a effective means to the automated operation of the container crane. This paper addresses the methodology for automation of container cranes. In addition, this paper proposes a new control architecture for the automated container crane and explains each component of that architecture. The control architecture is composed of a deliberative control layer, a sequencing layer, and a reactive control layer. The proposed architecture is applied to a dual-hoist double-trolley container crane.
-
선박용 엔진의 제작에 있어 크랭크 샤프트 조립 시 1 회전의 상태에서 크랭크 스루 간의 디플렉션의 상대값이 정상오차 범위를 넘어서는지 확인한 후 조립상태를 보정하게 된다. 기존의 방법은 다이얼 게이지를 사용하여 측정 담당자가 베드 플레이트 내에 들어가 크랭크 샤프트 회전 시 따라 돌면서 직접 육안 확인을 통해 측정이 이루어졌다. 이 때, 측정의 불편함과 열악한 작업환경 하의 안전 문제가 야기된다. 이러한 문제점을 해결하기 위해 본 연구에서는 블루투스 통신을 이용하여 디지털 게이지를 사용한 측정장치 기구부의 신호를 무선으로 받아서 작업자는 베드 플레이트 외부에서 측정이 가능하도록 하는 시스템의 개발하였다. 이를 통해 작업의 편리성 및 안정성을 확보했으며, 디지털 측정을 통한 측정의 정확도를 향상시켰다.
-
We present a piezoelectric actuator using stiffness control and stroke amplification mechanism in order to make large lateral displacement. In this work, we suggest stiffness control approach that generates lateral displacement by increasing the vertical stiffness and reducing the lateral stiffness using additional structure. In addition, an additional structure of a serpentine spring amplifies the lateral displacement like leverage structure. The suggested lateral PZT actuator (bellows actuator) consists of serpentine spring and PZT/electrode layer which is located at the edge of the serpentine spring. The edge of the serpentine spring prevents the vertical motion of PZT layer, while the other edge of the serpentine spring makes stroke amplification like leverage structure. We have determined dimensions of the bellows actuator using ANSYS simulation. Length, width and thickness of PZT layer are 135
$\mu$ m, 20$\mu$ m and 0.4$\mu$ m, respectively. Dimensions of the silicon serpentine spring are thickness of 25$\mu$ m, length of 300$\mu$ m, and width of 5$\mu$ m. The bellows actuator has been fabricated by SOI wafer with 25$\mu$ m-top silicon and 1$\mu$ m-buried oxide layer. The bellows actuator shows the maximum 3.93$\pm$ 0.2$\mu$ m lateral displacement at 16V with 1Hz sinusoidal voltage input. In the frequency response test, the fabricated bellows actuator showed consistent displacement from 1Hz to 1kHz at 10V. From experimental study, we found the bellows actuator using thin film PZT and silicon serpentine spring generated mainly laterally displacement not vertical displacement at 16V, and serpentine spring played role of stroke amplification. -
This work presents OLP system made independently in HSD for sub-assembly welding robot system set already and assembly welding robot system developed lately on the low speed diesel engines. This paper focuses on the DB module and the job creation based upon it. Also, It contains the welding history DB that saves the information of jobs executed after welding.
-
This paper present the temperature control of aluminum plate using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is asserted to Peltier element, it absorbs heat from low temperature side and emits to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with ON/OFF control scheme and fan ON/OFF. As the result of experiments, it is proper to act fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 100sec to increase to 7
$0^{\circ}C$ and drop to 35$^{\circ}C$ of aluminium plate temperature and about 90sec to increase to 7$0^{\circ}C$ and drop to 4$0^{\circ}C$ in ambient temperature 3$0^{\circ}C$ while fan is on only in cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier element to heating and cooling. -
Developed in this paper a mass-spring engine to represent and manipulate deformable objects. The deformable object model is a basic technology in the ‘Tangible Space Initiative’. The mass-spring model consists of structural, shear and bending springs. Various forces like external, friction, gravity, spring, and damping forces are considered and collision with planes and spheres are treated. When a sphere collide mass-spring model, mass-spring engine calculates external force to interface mass-spring model. A prototype system is implemented in C on an MS windows machine.
-
A rheology casting technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forming. The liquid segregation is important on mechanical properties of materials using rheology casting. In this study, so, molecular dynamics simulations were performed for the control of liquid segregation. Because the dynamics of fluid flow about nano-scaled materials is completely different from continuum, molecular dynamics simulations were used. The behavior of particles was far from the truth according to boundary conditions in simple flow. But various movement of particles appear at two or more molecular simulations.
-
As the technique of high-speed end-milling is widely adopted to in machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. In this study, cutting force, cutting temperature and microhardness were investigated to evaluate damaged layer in conventional machining and high-speed machining. Damaged layer was measured using optical microscope. The thickness of damaged layer depends on cutting process parameters, specially feed per tooth and radial depth. It is obtained that the characteristics of damaged layer is high-speed machining better than conventional machining.
-
The Development of an Integration Tool for the Data Sharing Among the Enterprise information SystemsRecently, many enterprises are introducing EAI(Enterprise Application Integration) technologies for integrating heterogeneous enterprise information systems. Among EAI levels, data-level integration is relatively straightforward and most popular. However, current commercial solutions have complex functionalities and are expensive for implementing the data integration tasks. Also, they have their own proprietary architectures and have a restricted interoperability. Proposed in this paper is the development of data integration middleware for facilitating data exchanges between the heterogeneous information systems. The main feature of this middleware is a explicit mapping of meta data about the relationships between source and target data. Based on this mapping, users who do not have expertise in information technology at the small & medium enterprise can easily handle data exchange tasks between information systems.
-
This paper presents a general description of single and dual contact tooling systems, finite element analysis, and discussions on the application of the system to the 5-head router machine which is in particular for aerospace components. This study has been performed as part of the development of the new generation 5-head router machine which is designed for high productivity. Such high productivity in essence requires high speed rotation and multiple spindles in one machine. The high speed rotation may exceed a range in a conventional single contact tooling system. The conventional tooling system is reevaluated in comparison with the dual-contact system. Finite element analysis using simplified spindle models compares major differences in the two systems. Some problems in the application to the 5-head router machine are discussed.
-
Despite is product that ship, vehicles, development equipment and Metal Bearing for plant equipment that is mass-produced by present domestic companies Cast White Metal Lining Bearing that is Bimetal Bearing standing 2 generation is accomplishing master and servant and this is foreseen to be used widely on industry whole in hereafter but Cast White Metal Bearing need minuteness processing, while price competitive power is depending on income from superior another thing area than itself manufacture already in advanced nation to lowdown that the technique is generalized widely, when take into account technology change aspect of industrial technology developing country, Go added value creation by deepening of price competition is judged to be difficult hereafter. Because domestic production and supply are wholly lacking almost in Metal Bearing Cladding that take advantage of these technology, Data-base about connection technology is weak with technique and Know-How for product. This research unites Back Steel and Aluminium Alloy different kind metal and make the Clad river studying technology about union of Gogangseong Dacheung metal bearing hereupon.
-
The effects of forming presure, organic binder content and moisture on flexural strength were investigated. As moisture content increased in the granules during compaction, the density and strength of the green body were increased. Green strengths were found to improve more strongly with increasing forming pressure in the case of using the granules of higher organic content. The sintered strength was the highest with the organic content of 0.2wt% under all forming pressures.
-
The refractive index of the laser interferometer is compensated using the simultaneously measured variations of room temperature and humidity in the method. In order to investigate the limit of compensation, the stationary test against two fixed reflectors mounted on the zerodur plate is performed firstly. From the experiment, it is confirmed that the measuring error of the laser interferometer can be improved from 0.12
$\mu$ m to 0.17$\mu$ m by the application of the method. Secondly, for the verification of the compensating effect, it is applied to estimate the positioning accuracy of an ultra precision aerostatic stage. Two times of the refractive index compensation are performed to acquire the positioning error of the stage from the initially measured data, that is, to the initially measured positioning error and to the measured positioning error profile after the NC compensation. Although the positioning error of anaerostatic stage cannot be clarified perfectly, it is known that by the compensation method, the measuring error by the laser interferometer can be improved to within 0.15$\mu$ m. English here. -
This paper deals with the designing of instrument for achieving surgical operation in the stomach and gullet using endoscope channel. The method used herein was to provide beads to knot suturing thread automatically. Following design rules were applied : 1) that instrument must be designed to enable surgical operator to stitch successively by only simple handling 2) that instrument must be designed to minimize insertion and extraction of endoscope. The main result from the experiment with animal stomach was that the surgical operation time was reduced and successive suture was available. Considering the requirement of operator‘s highly trained skills and the discomfort of patient in traditional suture process, the proposed design is expected to markedly improve the endoscopic suturing performance.
-
In this paper, we developed a network camera for CMOS camera module inspection. The design, implementation details including embedded linux porting and CPLD logics, and performance of network camera are described. The network camera consists of SoC(S3C4530A), CPLD and CMOS image sensor. In order to image data of CMOS image sensor we designed capture logics on CPLD by using VHDL program. Embedded Linux such as uClinux is performed on the network camera to utilize development environment and TCP/IP protocol specification. The application is based on socket communication between GUI on PC and Embedded Linux based network camera. When JPEG compression is applied, the transmission speed was improved enough for this system to be used for an alternative of expensive CCTV or remote monitoring system in a power plant and uninhabited places.
-
It is a challenging task to make the paraplegic to walk with out the assist of the caregiver. So, we have developed various type of gait orthosis for paraplegic during the five years lately. The purpose of this study ultimately is energy consumption test of serveral type gait orthosis for developing the high efficiency gait orthosis. From the experimental results, the oxygen consumption rate were 6.9
$\pm$ 3.3ml/kg in RGO gait, 5.3$\pm$ 1.3ml/kg in PGO, and 6.2$\pm$ 3ml/kg in HGO gait. The maximum hip flexion angle were 16$^{\circ}$ in RGO , 15$^{\circ}$ in PGO, and 47.5$^{\circ}$ . in HGO. As a result It was found that. Hybrid Gait Orthosis need high energy consumption more than PGO for walking, but it is small weight and strengthened muscle. -
With a rapid development in the area of micro and ultra precision technology, the micro surface machining of small size parts are explosively increased. Especially, to improve efficiency of various beams in lens and reflector, non-rotational symmetric form and several mm level heights changeable surface can be machined at a time. These geometric complex 3D surface cannot be machined by general short stroke FTS. The long stroke FTS if firmly needed to move directly several mm and have nm level positioning accuracy for the complex surface form. The long stroke FTS used linear motors to drive moving unit long and fine, aero static bearings to decrease friction and moving errors in guide way, optical linear scale with nm level resolution to measure position of FTS. Furthermore, to increase the performance of acceleration of FTS, the light material, such as AL is used for the structure and the high stiffness box type structure is selected. In this paper, the genetic algorithm approach is described to determine a set of design parameters for auto tuning. The authors have attempted to model the design problem with the objective of minimizing the error, such as variable pattern change. This method can give the better alternative than existing other method.
-
Continuously variable transmission (CVT) mechanisms considered here is a V-belt drive with two variable-diameter pulleys and effective diameters. One pulley was set by a mechanical link while the other was spring-loaded to provide automatic correspondence. The center distance between the two variable-diameter pulleys was fixed. Experimental studies were executed to analyze efficiencies as change of its speed ratio.
-
Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.
-
In this paper, we implement a sensor which can perceive obstacles. We constructed it with a laser emitting a structured light and a small pc camera. It is cheap and can measure the precise sizes of the obstacles. Ultrasonic arrays and laser scanners are used generally to perceive obstacles in the autonomous mobile robot until now. However we knew that they can perceive big obstacles well, but cannot perceive small obstacles on the ground by experiments. We mounted this equipment to our robot and use it to perceive the obstacles of the front side. Our robot can recognize the obstacles of 10mm height. We expect that this equipment will be useful because it is cheap but work well.
-
Qualitative elevation of products is very important Part. A business racking us brains to find for qualitative elevation of products. Recently, measurement accuracy of a non-contact 3D scanner has been rapidly improving. As a result, the number application cases of non-contact 3D scanners are increasing. A non-contact 3D scanner is capable of measuring a curved surface rapidly and has high resolution. It is more affordable and potable than the CMMs, It is therefore expected to be applied more frequently in more diverse industries. Automating the measuring process using a non-contact 3D scanner and developing a technology, which allows a user to measure easily, will eventually improve the quality of products. As their inspection and analysis processes improve.
-
UV molding is a process for integrating micro/nano polymeric optical components on optoelectronic modules. In the present study, a microlens array for vertical cavity surface emitting laser(VCSEL) to fiber coupling was designed, integrated and tested. At the design stage, design variables ware optimized to maximize the coupling efficiency, and tolerance analysis was carried out. At the integration stage, the UV transparent mold was fabricated and the microlens array on VCSEL array was integrated by UV molding process. Finally the coupling efficiency of VCSEL to fiber was measured and analyzed.
-
We evaluate the durability of vehicle chassis component under dynamic loadings. Since the fatigue analysis of vehicle component is based on the dynamic load history it must be done by dynamic analysis. But in case the vehicle component has natural frequencies much larger than reversing frequencies of load history, we can get small analysis errors by applying quasi-static analysis. So it is inefficient that we apply to the dynamic analysis for all the vehicle components. In this research, we discuss the quasi-static analysis method which is appropriate for the fatigue analysis. And in case we can only perform the fatigue analysis based on dynamic analysis, we introduce more efficient method in the analysis time and hard disk storage.
-
The development of 3D CAM system for the manufacturing of end mills becomes a key approach to save the time and reduce cost for end mills manufacturing. This paper presents the calculation and simulation of end mill tools CNC machining bases on 5-axes CNC grinding machine tool. In this study describes the process of generation and simulation of grinding point data between the tool and the grinding wheels through the machined time. Depend on input data of end mill geometry, wheels geometry, wheel setting, machine setting the end mill configuration and NC code for machining will be generated and visualized in 3 dimension before machining. The 3D visualizations of end mill manufacturing was generated by using OpenGL in C++. The development software was designed by using Microsoft Visual C++, which has many advantages for users, saving time and reducing manufacturing cost.
-
We develop a new four-node flat shell element which is accurate, efficient, and suitable to be used on general purpose. The new element has a hybrid Trefftz element with drilling degrees of freedom as a membrane part. We define the two independent displacement field: the internal displacement field that satisfies governing equations in the domain a priori and the boundary displacement field that is usually used as a conventional finite element method. The hybrid Trefftz variational formulation connects these two displacement fields on the boundary of the domain. To add drilling degrees of freedom, we introduce the Allman's quadratic displacement field to the boundary displacement field. As a result, our flat shell element has 6 degrees of freedom per a node. We also use the well-known DKMQ plate bending element for the plate part of the proposed element. The DKMQ element satisfies Mindlin-Reissner‘s plate theory along the edge of the element and gives proper behavior regardless of the thickness. A series of numerical experiments shows that the performance of the new element such as accuracy, rate of convergence, robustness to mesh quality, and so on.
-
This article discusses the use of pulse-echo ultrasonic testing for the stress analysis of adhesive bonds between metal sheets. The method is based on the measurement of the reflection wave at the metal/adhesive interface. After describing briefly the physical aspects of the phenomenon, an index is defined to detect defective zone of the joint(both for the lack of adhesive and for insufficient adhesion); the influence of the experimental variables(variables stress...) on the measurement is discussed. By means of a control experiment it is shown that Stress Variation in Adhesive Joints are separate to be distingguished. In this paper, Quantitative Nondestructive Evaluation in Adhesive Joints are together with Ultrasonic Testing and Finite Element Method.
-
This paper describes the generation of chordal surface for various shell structures, such as automobile bodies, plastic injection mold components and shell metal parts. After one-layered tetrahedral mesh is generated by an advancing front algorithm, the chordal surface is generated by cutting a tetrahedral element. It is generated one or two elements at a tetrahedral element and the chordal surface is composed with triangular or quadrilateral elements. This algorithm has been tested on several models with rib structure.
-
Fabrication of a high-resolution shadow mask, or called nanostencil, is presented. This high-resolution shadowmask is fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. 500 nm thick and 2x2 mm large membranes are made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. Subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to high resolution of FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane.
-
Stray light is the light except the light of the analytic wavelength and the source of measurement error of absorbance. Some experimental results showed that diffractive grating is the major factor of stray light in spectrophotometer. Through the ray tracing with the software tool, classified the paths of the diffractive light from grating and found the range of wavelength which reach the exit slit. The quantity of the stray light(0.025%) is more than the minimum limit of stray light(0.01%) of the single monochromator. A novel optical layout design method, which prevent the reflected rays entering the diffractive grating is proposed.
-
We report a method for making a device on which semi-conducting single-walled carbon nanotubes are attached selectively between two metal electrodes. This method is divided two processes. First we can connect a rope of single-walled carbon nanotubes(SWNTs) between two electrodes using the electric field. But a SWNTs' rope obtained by the first process was composed of a few of metallic and semi-conducting SWNTs together. The second process is to burn the metallic and semi-conducting nanotubes through applying a voltage. As a result, we can obtain a semi-conducting SWNT device. To make the patterned electrodes, we deposited
$SiO_2$ (150nm) on a wafer. After then, we made a patterned samples with Ti(200$\AA$ )/Au(300$\AA$ ). We empirically obtained a electric condition 0.66$V_{pp}$ /${\mu}{\textrm}{m}$ @5MHz. From this result, we verified that most of current go through the metallic nanotubes in this device. When we apply DC voltage between two electrodes, the metallic carbon nanotubes are burnt. Finally, we can obtain a semi-conducting nanotube device which we desire to make. We got the I-V characteristic graph which has shown the semi-conducting property. We hope to apply to the various applications using this selective semi-conducting carbon nanotube deposition method.ethod. -
A simple macro triangle with drilling d.o.f.'s is proposed for plane stress problems based on IET(Individual element test) and finite element template. Three-node triangular element has geometrical advantages in preprocessing but suffers from bad performance comparing to other shapes of elements -especially quadrilateral. Main purpose of this study is to construct a high-performance linear triangular element with limited supplementary d.o.f.'s. A triangle is divided by three sub-triangles with drilling d.o.f.'s. The sub-triangle stiffness come from IET passing force-lumping matrix, so this assures the consistency of the element. The macro element strategy takes care of the element‘s stability and accuracy like higher-order stiffness in the F.E. template. The resulting element fits on the uses of conventional three-node. Benchmark examples show proposed element in closed form stiffness from CAS (Computer algebra system) gives the improved results without more computational efforts than others.
-
The ultra precision machining in industrial field are increased day by day. The diamond turning has been used generally, but now is faced with limitation of use, because of higher requirement of production field. The electron beam lithography is alternative in machining area as semiconductor production. For EB lithography, 5 axis vacuum stage is required to duplicate small and large patterns on wafer. The stage is composed of 2 rotational axis and 3 translational axis with 5 DC servo motors. The positioning repeatability and resolution of Z axis feed unit are 3.21
$\mu$ m and 0.5$\mu$ m/step enough to apply to lithography. -
In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.
-
Generally, in case the natural frequency of vehicle components is larger than the reversing frequency of load history, we can obtain the analysis results with small errors. But in case of having the low natural frequency, we must avoidably carry out the dynamic analysis, and it requires much time and storage. Specially executing the fatigue analysis for vehicle components requires more time. To this end, it is not easy that we accomplish the optimization considering fatigue for the vehicle component based on the dynamic analysis. In this research we introduce an efficient method which performs the fatigue analysis based on the dynamic analysis. Finally as making the response surface we optimize the vehicle component under dynamic fatigue.
-
In this paper, a multi-step optimization using a G.A. (Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a 5-head route machine. Our design procedure consist of two design optimization stage. The first stage of the design optimization is static design optimization. The following stage is dynamic design optimization stage. In the static optimization stage, the static compliance and weight of the structure are minimized simultaneously under some dimensional constraints and deflection limits. On the other hand, the dynamic compliance and the weight of the machine structure are minimized simultaneously in the dynamic design optimization stage. As the results, dynamic compliance of the 5-head router machine was decreased by about 37% and the weight of the structure was decreased by 4.48% respectively compared with the simplified structure model.
-
In this paper, we describe a robust image processing algorithm to recognize the road lane in real-time. For the real-time processing, a detection area is decided by a lane segment of a previous frame and edges are detected on the basis of the lane width. For the robust driving, the global threshold with the Otsu algorithm is used to get a binary image in a frame. Therefore, reliable edges are obtained from the algorithms suggested in this paper in a short time. Lastly, the lane segment is found by hough transform. We made a RC(Radio Control) car equipped with a vision system and verified these algorithms using the RC Car.
-
A vacuum environment is very important for NGL(Next Generation Lithography) apparatuses such as EUVL(Extreme Ultra Violet Lithography) or EPL(Electron Projection Lithography) and so on. The performance of these systems is dominated by vacuum level of processing and positioning accuracy of a stage. So, ultra-precision stage usable in a high vacuum level is needed for the improved performance of these devices. In contrast to atmospheric condition, a special attention must be paid to guide bearing, actuator and other elements. In this paper, air bearing is adopted because of its very high motional accuracy. So, air bearing is designed to be vacuum compatible using differential exhaust method, which prevents air from entering into vacuum chamber. For this, leakage analysis is performed theoretically and verified from experiment.
-
In this paper, we proposed a new method of pre-operative planning for tibial deformity correction using double hexapod external fixator in pseudoacondroplasia. The 3-D computer graphic model of deformed tibia was reconstructed from 3 mm sliced CT data, and CAD model of double hexapod external fixator was developed. The fixator was composed of 170 mm diameter of three rings and 90 mm of twelve struts. The bone deformities and the osteotomy lines for double osteotomy were measured using X-rays, and the necessary joint values to correct the given deformities were obtained by inverse kinematics analysis. The computer graphic simulation was performed to visualize the deformity correction process and evaluate the analysis result. By examining the pre-op and post-op X-rays, the simulation result was in good agreement with the clinical outcomes.
-
This paper is to investigate a crack for plasma sprayed MCrAlY coated material by acoustic emission method in 4-point bending test. The CoNiCrAlY is coated on Inconel-718 by vacuum plasma spray process. Micro-hardness measurement was conducted by means of Micro Vickers-hardness indentor. The porosity of coating layer was measured using a SEM and Image Analyzer. AE monitoring system is composed of PICO type sensor, a wide band preamplifier(40dB), a PC and AE DSP(16/32 PAC) board. The AE count, Hit and energy of coating specimens is measured according to coating thickness.
-
The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper was carried out some experiments and verifications of mechanism on FIB-CVD using SMI8800 made by Seiko. FIB-CVD has in fact proved to be commercially useful for repair processes because the beam can be focused down to 0.05
$\mu\textrm{m}$ dimensions and below and because the same tool can be used to sputter off material with sub-micrometer precision simply by turning off the gas ambient. Recently the chemical vapour deposition induced ion beam has been required more deposition rate and accurate pattern because of trying to manufacture many micro and nano parts. Therefore this paper suggested the optimization parameters and discussed some mechanism of chemical vapour deposition induced ion beam on FIB-CVD for simple pattern. -
As 3D scanner develops, it can be used in measurement. To accomplish complete 3D measurement, the scanner has to view different sides of the target. It can be done by moving the scanner and fix it at every measuring point. By human, it would take so much time. However, by using robot, measuring time can be reduced and the procedure can be automated. It is suitable for 6R serial manipulator to do this kind of work in which the scanner should go any position in arbitrary orientation. We did inverse kinematics analysis by analytical and graphical methods. Then, we compared two methods.
-
This paper describes the quantitative analysis on the improvement of equilibrium sensory using virtual bicycle system. We have used a virtual bicycle system that combines virtual reality technology with a bicycle. In this experiment, 10 subjects were tested to investigate the influencing factors on equilibrium sensory. Straight road and curved road driving at several factors including cycling time, number of times of path deviation, and center of pressure(COP) were extracted and evaluated to quantify the extent of control. Also, To improve the effect of balance training, we investigated the usefulness of virtual feedback information by weight shift. The result showed that the system could be effective for equilibrium sensory rehabilitation training device. The analysis method might also have wider applicability to the rehabilitation field.
-
The side and rear-side collision warning system using fuzzy control algorithms is discussed in this paper. Common rearside warning system has many problems. For example if target vehicle comes into the warning area, it must unconditionally warn. Drivers could be interrupted by it. To solve the problem, I divided measuring area into two sections. One section is blind area of vehicle and the other rear-side area. For blind area, obtained data was filtered inefficient warning signal by using relative velocity method. For rear-side area, a fuzzy logic algorithm is used to recognition of obstacles. According to our experiment relative velocity method and fuzzy logic algorithms were very efficient.
-
The purpose of this study was to identify the characteristics of muscular power by COP(center of pressure) training according to the angle variation of tilting bed. We changed the angles of tilting bed(up-down direction 0
$^{\circ}$ , 15$^{\circ}$ , 30$^{\circ}$ , 45$^{\circ}$ and right-left direction -15$^{\circ}$ , 0$^{\circ}$ , +15$^{\circ}$ ) for the correlation between angles and muscular power. And we measured EMG(electormyography) of lower limbs muscle(rectus femoris, biceps femoris, and gastrocnemius, tibialisa anterior) during COP training. COP training was divided by the COP trace training(in all direction) and sine wave trace training(vertical and horizontal direction). As the result, we obtained the improvement effect of COP training and we showed that electromyography(EMG) variations of lower limbs muscle on the angle variations of tilting bed were investigated. -
For stable walking of various biped walking robots(BWR), we need to know the kinematics, dynamics and the Zero Moment of Point(ZMP) which are not easy to analyze analytically. In this reason, we developed a simulation program for BWRs composed of 4 degree-of-freedom upper-part body and 12 degree-of-freedom lower-part of the body. To operate the motion simulator for analyzing the kinematics and dynamics of BWES, inputs for the distance between legs, base angle, choice of walking type, gaits, and walking velocity are necessary. As a result, if stability condition is satisfied by the simulation, angle data for each actuator are generated automatically, and the data are transmitted to BWRS and then, they are actuated by the motion data. Finally, we validate the performance of the proposed motion simulator by applying it to a constructed small sized BWR.
-
Tire belt durability is characterized by the initiation of a crack at the belt edge region, and the propagation of the crack until the ply is separated. Experimental methods have been used to analysis of the belt durability in the cord-reinforced rubber composite tires, but it takes much cost and time to make experiments. In this paper, a finite element method to analyze the fatigue life of a crack at the belt edge of tires is presented. The fatigue life is analyzed by using a three-dimensional Finite Element Modeling. This method includes a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack and use of the J-integral for energy release rate evaluation.
-
Most of people who are engaged in research and development find it difficult to solve the engineering problems creatively due to the lack of ideas. There are two famous methods for inventive problem solving: 'Brainstorming' and 'TRIZ'. Brainstorming is the most popular tool until now to find a creative solution and TRIZ is not so popular yet but leads us to a very useful and clear solution. These two methods whose goals are the same usually take quite different routes to the final solution; Those routes have their own unique advantages and disadvantages. In this paper, a creative problem solving method optimized by correlating Brainstorming and TRIZ is proposed. And this method demonstrates how rough initial ideas can be quickly refined and how a problem can be solved correctly.
-
This paper describes the development of the test path for Eclipse-II, a parallel mechanism motion simulator. Eclipse-II which can be used as a base for general motion simulators, enables unlimited continuous 360-degree spinning in any rotational axes plus finite X, Y, and Z translation motions. The advantage of enabling continuous 360-degree spinning allows various motions for virtual reality. In this paper, the development of the test path to verify the robustness of the Eclipse-II motion simulator is described. The test motions, which satisfy the requirements of test path, are suggested and washout filter enables these motions reproduced in the limited workspace. The trial run is conducted to verify the robustness of the Eclipse-II motion simulator. Additionally the standard data format of virtual reality for Eclipse-II One Man Ride is suggested.
-
This paper describes the mechanism of parallel micro machine platform and its feedback control system for acquiring high accuracy. The parallel micro machine platform that has developed has 5x5x5 work-space and sub-micron accuracy. For the high accuracy, the feedback control system is important but errors in machining and assembling are inevitable. Kinematic calibration is important for this reason. In this paper, various error components are introduced and the effects of error component are analyzed.
-
So far, this report is written by knowledge and standard through several reference drawing and experienced contents with drawing hemming die. The contents about actual design is so huge that I will write about it next time. Timing chart is important to hemming die because of link position and numbers. Timing chart need a very much design time because link number and position have to applied for each case. In this paper developed an automatic timing chart and link position by relation and Pro/Program of Pro/Engineer. The method used relation rule of design parameter for timing chart. In the future, I believe that simple easy to correct and reasonable price hemming die will be producted.
-
Metalworking fluids (MWFs) are fluids used during machining and grinding to prolong the life of the tool, carry away debris, and protect the surfaces of work pieces. These fluids reduce friction between the cutting tool and the work surface, reduce wear and galling, protect surface characteristics, reduce surface adhesion or welding and carry away generated heat. Workers can be exposed to MWFs by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs by dipping the hands into the fluid, splashes, or handling workpieces coated with the fluids. The amount of mist generated (and the resulting level of exposure) depends on many factors. To reduce the environmental pollution wastes and the potential health risks associated with occupational exposures to MWFs, it is required to establish optimum MWFs supply method and condition with minimum quantity in all over the mechanical machining field including high-speed type heavy cutting process.
-
This paper is about the development of Automatic FPC punching instrument. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. Test algorithm shows good results to the designed automatic punching system.
-
This paper proposes a new training system for equilibrium sense and postural control using unstable platform and force plate. This system consists of unstable platform, force plate, computer interface, software and the computer. Using this system and training programs, we perform the experiment to train the equilibrium sense and postural control of subject. To evaluate the effects of balance training, we measured some parameters such as the maintaining time in the target, the moving time to the target and the mean absolute deviation of the trace before and after training. The result shows that this system can improve the equilibrium sense and balance ability of subject. This study shows that proposed system had an effect on improving equilibrium sense and postural control and might be applied to clinical rehabilitation training as a new effective balance training system.
-
In general, it is known that walking stability of a quadruped is determined by its COG(Center of Gravity). In this paper, in order to know whether our virtual quadruped robot is applicable to the real quadruped robot, we simulated our virtual model using the data from the real robot‘s walking. We were able to evaluate the stride of quadruped based on direct and inverse kinematics and compared the stride of the simulation with real robot’s it. During the simulation we calculated the COG of the virtual model and evaluated the walking stability of real model.
-
A data error inspection algorithm for wireless digital data communication was developed. Original data converted By wireless digital data error inspection algorithm. Wireless digital data is high possibility to get distortion and lose by noise and barrier on wireless. If the data check damaged and lost at receiver, can't make it clear and can't judge whether this data is right or not. Therefore, by wireless transmission data need the data error inspection algorithm in order to decrease the data distortion and lose and to monitoring the transmission data as real time. This study consists of RF station for wireless transmission, Water Level Meter station for water level measurement and Error inspection algorithm for error check of transmission data. This study is also that investigation and search for error inspection algorithm in order to wireless digital data transmission in condition of the least data's damage and lose. Designed transmitter and receiver with one - chip micro process to protect to swell the volume of circuit. Had designed RF transmitter - receiver station simply by means of ATMEL one - chip micro processing the systems. Used 10mW of the best RF power and 448MHz-449MHz on frequency band which is open to public touse free within the limited power.
-
As the public use part of the railway and the road, the railway crossing is important to work properly by two transportation means. Also, It is important to provide the good face of friction on the railway crossing in aspect of protecting the railway crossing accident. Lately, Many kinds of the material are used for railway crossing panel. As they have a various fault, it was studied to analyze the structural action of the new material, rubber panel. This paper analyzed stress and displacement by truck passing weight using the Finite Element Modeling.
-
In this paper have developed a system for monitoring and processing the real time sensor data in remote site through network. For realizing this system, measurement equipment and protocol are used to transmit the measurement data to remote server and to process measurement data. In server part, the received data from remote site sensor is converted to text or graphic charts for user. The measurement device in sensor part receives the sensor data form sensor and store the received data to its internal memory for transmitting data to server part through Internet. Also the measurement device can receive data form server. The temperature sensor is connected to the measurement device located in laboratory and the measurement device measures temperature of laboratory which can be confirmed by user through Internet. We have developed a server programworking on the Linux to store measurement data from measurement device to server memory. The program is use for SNMP(Simple Network Management Protocol) to exchange data with measurement device. Also the program changes the measurement data into text and graphic charts for user display. The program is use apache PHP program for user display and inquiry. The real time temperature measurement system can be apply for many parts of industry and living.
-
To increase the productivity and efficiency of an enterprise, all relevant product information should be provided to shop floor workers timely and in a unified form because shop floor workers are final consumers of most accumulated information generated from various departments of an enterprise. but, most existing enterprise information systems have an emphasis upon providing design/manufacturing information to office workers. Proposed in this study is a development of integrated design/manufacturing information system focused system, the function required for shop floor activities. For developing integrated information system, the functional required for shop floor are identified and analyzed. Based on the extracted functional requirements, object-oriented system design and implementation is conducted. By using this system, shop floor workers can refer to all relevant information necessary to their work easily and in a integrated form.
-
High level radioactive wastes, such as spent fuels generated from nuclear power plant, will be disposed in a deep geological repository. To maintain the integrity of the disposal canister and to carry out the process effectively, the emplacement process for the canister system in borehole of disposal tunnel should be well defined. In this study, the concept of the disposal canister emplacement process for deep geological disposal was established. To do this, the spent fuel arisings and disposal rate were reviewed. Also, not only design requirements, such canister and disposal depth but also preliminary repository layout concept were reviewed. Based on the requirements and the other bases, the canister emplacement process in the borehole of the disposal tunnel was established. The established concept of the disposal canister emplacement process will be improved continuously with the future studies. And this concept can be effectively used in implementing the reference repository system of our own case.
-
It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, column unit build up with several electo-magnetic lens is necessarily required more than anything else to modify scanning electron microscope. In this study, various components included several electro-magnetic lens and main body which are essentially constructed for column unit are designed and manufactured. And this established column unit will be used for next connected study in the development step of scanning electron microscope based electron beam machining system.
-
During demonstrations of a process conditioning spent nuclear fuels, it may be necessary to transport modularized parts of process equipment out of a hot cell because of modules' failure or completion of demonstrations. It may be not easy to transport modules because modules will be contaminated. For this purpose, we have developed a prototype of a device transporting radioactive contaminated materials. We have analyzed conditions of a hot cell and requirements of the device, designed and manufactured a scaled-down prototype of the device, and done some performance tests such as running on the rail, running on the flat floor, and carrying capability of a sliding upper part. From the tests, it has been shown that running on the rail and floor was smooth but the sliding part was deflected if the sliding distance was long. These result will be reflected to a design of the improved transporting device which will be used during demonstrations.
-
In this paper, we studied low cycle fatigue behavior of laser welded sheet metal that used automobile body panel. Specimens were manufactured as weld condition and sheet metal using automobile manufacturing company at present. For to know mechanical properties, micro Vicker's hardness test was performed of specimens. But, we can't confirm mechanical properties of weld bead and heat affected zone because laser weld makes very narrow weld bead and heat affected zone than other welding method. Therefore, we performed low cycle fatigue test with similar weldment, dissimilar weldment, similar thickness and dissimilar weldment, and dissimilar thickness and dissimilar weldment for fatigue properties of thickness and welding direction. As well, we analysis stress distribution of base metal, weld bead, and heat affected zone according to strain load using finite element method.
-
Concern over the negative environmental impacts associated with the production, use and End-of-Life(EoL) of cellular phones is particularly high due to large production volumes and characteristically short time scales of technological and stylistic obsolescence. Therefore we have to research the environment-friendly technologies and the recycling methods. This paper introduces an improvement of cellular phone remanufacturing processes and develops the Directive of DFE(Design for Environment) for the remanufacturing of a cellular phone. Then We discuss the results of the comparative evaluations.
-
The goal of this paper is to develop a system which provides infotainment services for the healthy life of the elderly. First, we define the infotainment services for the elderly, and then determine the infotainment contents and categories related to the infotainment service. In order to provide the infotainment service, we define several modules as follow: user representation, contents generation, contents personalization, provision and learning manager. Finally we develop a pilot system which is based on the proposed framework.
-
In this study, developed a micro-level experimental setup to measure pore pressure and poroelastic modulus in various strain and strain rate about a stress in micro-structure of bone tissue. It is essential device in the development of the model to analysis the interstitial bone fluid flow of the lacuno-canalicular system to be known that would effect on the bone remodeling. The constitution of the experimental setup is as follows, microscopic image processing system; actuator control unit; load measurement system. A pilot study was used an artificial chemical wood to have similar poroelastic property of bone matrix and conducted to validate the suitability of the measurement system.
-
Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded in rubber or plastic material. Especially, urethane is high in mechanical strength and anti-abrasive. Hereby, an urethane coated aluminum wheel is used for supporting of OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety for applied maximum dynamic load on a urethane wheel needs to be carefully examined while driving. Therefore, we have performed the dynamic simulation on the OHT vehicle model. Although the area definition of applied load can be obtained from the previous study of Hertzian and Non-Hertzian contact force model when having exact properties of contact material, static analysis is simulated, since the proper material properties of urethane have not been guaranteed, after we have performed the actual contact area test for each load. In case of this study, the method of distributing load for each node is included. Finally, in comparison with result of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we have verified the safety of the wheel. After all, we have performed a mode analysis using the obtained material properties. With the result, we have the reliable finite element model.
-
The ubiquitous environment is to support people in their everyday life in an inconspicuous and unobtrusive way. This requires that information of the person and her preferences, liking, and habits are available in the ubiquitous system. In this paper, we propose the context aware system that can provide the tailored information service for user in ubiquitous computing environment. The system architecture is composed of 4 domain models that can perform some pre-defined tasks independently. And we suggest the hybrid algorithm combined with fuzzy and Bayesian network to reason what information is suitable for user environment. Finally, we apply to agent based RGA(Research Guide Assistant).
-
Research in Human Computer Interface (HCI) is towards development of an application environment able to deal with interactions of both human and computers that can be more intuitive and efficient. This can be achieved by bridging the gap between the synthetic virtual environment and the natural physical environment. Thus a project called Tangible Space Initiative (TSI) has been launched by KIST. TSI is subdivided into Tangible Interface (TI) which controls 3D cyber space with user's perspective, Responsive Cyber Space (RCS) which creates and controls the virtual environment and Tangible Agent (TA) which senses and acts upon the physical interface environment on behalf of any components of TSI or the user. This paper is a brief introduction to a new generation of Human Computer Interface that bring user to a new era of interaction with computers in the future.
-
In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion with sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed the least wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as a curing unit for composite resin restorations.
-
The knowledge-based society of the 21st century requires effective education and learning methods in each professional field because the development of human resource determines its competence more than any other factors. It is highly desirable to develop an intelligent tutoring system, which meets ever increasing demands of education and learning. Such a system should be adaptive to each individual learner's demands as well as the continuously changing state of the learning process, thus enabling the effective education. The development of a learning environment based on learner modeling is necessary in order to be adaptive to individual learning variants. An intelligent learning environment is being developed targeting the heritage education, which is able to provide a customized and refined learning guide by storing the content of interactions between the system and the learner, analyzing the correlations in learning situations, and inferring the learning preference from the learner's learning history. This paper proposes a heritage learning system of Bulguksa temple, integrating the ontology-based learner modeling and the learning preference which considers perception styles, input and processing methods, and understanding process of information.
-
Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.
-
This paper is on the development of a system for removing membranes which is designed exclusively for aircraft components. Membrane removal solution is a most critical issue in aerospace industries since a method of manufacturing the components tends to be changed from fabrication of many parts to cutting into one body. The cutting method inevitably produces a huge amount of chips and then membranes remain in the body. The membrane removal process, as a result, becomes an important issue since it is directly related to productivity. We tried to develop a new machine which will replace the conventional method that uses a handy tool. The machine has been designed for a cutting tool set to follow the unique shape of the slot in the body by a cam follower and cut the membrane automatically. The design has been checked by structural analysis: stress and vibration analysis. A prototype test has been finished. This paper summarizes a series of development process of the deburring machine and some design issues are discussed.
-
This investigation is the result of a structural analysis by FEM and test to define the deformation mode of the Up-Right type Vacuum-Cleaner's Nozzle-Cover. In FEM analysis, 3 different conditions were considered separately, such as (1) Compressive force by Belt tension, (2) Friction heat between Belt and shaft and (3) Compressive force combined with heat. Throughout FEM analysis it was found that the deformation was caused by heat and it was proved through a simulation test with a real product.
-
A robot manipulator is usually operated in two modes: free motion and constraint motion depending on whether the robot comes into contact with the environment or not. At the moment of contact, impact occurs, and sometimes, it possibly degrade the robot's performance by vibration and at worst, shortens its lifetime. In this article, a new proposed algorithm is described by introducing a command signal modification method on the basis of impedance control and a validity of the proposed algorithm is demonstrated by showing a simulation and an experiment.
-
Since the sheet forming of Mg alloy has many difficulties due to the low formability, many forming conditions need to be selected properly. Especially, the process variables should be investigated to increase the formability, such as, forming temperature. In this paper, the effects of forming process variables has been investigated using the bending and deep drawing process. A simple U-bending designed for mobile part could be formed in room temperature and springback amounts are surveyed. On the other hand, square cup part couldn't be formed in room temperature due to the low formability. Therefore, the effects of forming temperature are investigated in deep drawing process for square cup part. As a experimental and FEM results, the optimum forming temperature is presence and formability in a higher temperature is less than that of lower temperature. Above experimental results are compared with the FEM analysis and well coincided with the experimental results. Therefore, more detail investigations could be progressed to select more appropriate process conditions by the FEA.
-
stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the position of the target using a stereo vision system. In this paper we persent a visual approach to the problem of object grasping. First we propose object recognization method which can find the object position and pose using feature points. A robot recognizes the feature point to Object. So a number of feature point is the more, the better, but if it is overly many, the robot have to process many data, it makes real-time image processing ability weakly. In other to avoid this problem, the robot selects only two point and recognize the object by line made by two points. Second we propose trajectory planing of the robot manipulator. Using grometry of between object and gripper, robot can find a goal point to translate the robot manipulator, and then it can grip the object successfully.
-
It is necessary to consider the stability, economic environmental-friendly problems by the development of the road, supply of the automobile, environmental problem as designing the exhaust system. To reduce the noise and the vibration of the automobile. The need for stricter regulation limits emission and demand for lower fuel comsumption. According to motor vehicle company develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption for demand information of pressure fraction and heat characteristics. To be able to determine these factor for we experiment on each case of exhaust system unit. In this study, in order to establish the optimized conditions design factors which are taking many performance as the variable valve, it shows how the standard performance and the additional element of the exhaust system effects on the engine performance.
-
A rear axle spider in an irregular shape, which is used as a part in the braking system of a vehicle like a big truck and a trailer, is subjected to a large torque and hence requires both strength and endurance over the brake heat. This part should be therefore manufactured in dimensional accuracy. The practical manufacturing process of this irregular product requires the heat treatment process after hot forging and then the cold coining process for the dimensional accuracy. At the present study, the warm coning without the heat treatment process was proposed to employ the residual heat due to the hot forging process. And also the trimming and piercing process was designed using the rigid-plastic finite element method. The mechanical properties were discussed and also commented upon.
-
A brake spider in an irregular shape, which is used as a part in the braking system of a vehicle like a big truck and a trailer, is subjected to a large torque and hence requires both strength and endurance over the brake heat. Manufacture of this product in practice is generally composed of hot forging processes and machining. At the present study, two or more processes were considered for the hot forging. With an initial circular billet, blocker and finisher processes were analyzed using the rigid-plastic finite element method and also in addition to the preforming process. Proper forging processes to manufacture an irregular product without forging defects, which are preforming, blocker and finisher, were discussed and commented upon.
-
This paper describes the structural analysis result and load test result of accident EMU(Electric Multiple Units). Structural analysis and load test of EMU were performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The purpose of the load test is to evaluate a safety which carbody structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. The results have been used to provide the critical information for the criteria of safety assessment.
-
This paper presents a high sensitive force sensing module to measure machining forces for a tip-based nanopatterning instrument. The force sensing module utilizing a leaf spring mechanism and a capacitive displacement sensor has been designed to provide a measuring range from 80
$\mu$ N to 8N. This force sensing module is mounted on a PZT driven in-feed motion stage with 1 nm resolution. The sample can be moved by a X-Y scanning motion stage with 5 nm resolution. In the patterning experiments, the machining forces were controlled and monitored by the force sensing module. Then, the patterned sample was measured by AFM. Experimental results demonstrated that the developed force sensing module can be used as an effective sensing device in the nanopatterning operation. -
This paper presents the dynamic analysis method for an electromechanical system. The engineer has at his disposal a variety of software simulation tools. However, difficulties arise when the study of the behavior of complex electromechanical systems in combination with coupling element is required. Typical examples of such systems are machines for factory automation, home automation, and office automation. Dynamic systems analysis packages or electronic systems analysis packages offer the restrictive to simulate these mixed systems such electromechanical product. Electronic circuit analysis algorithm is easily incorporated into a multi-body dynamics analysis algorithm. The governing equation of electronic circuit is formulated as a differential algebraic equation form including both electrical and mechanical variables and is simultaneously solved in every time step. This analysis method clearly demonstrates the application potential for mixed electromechanical simulation.
-
In the UV-NIL process using an elementwise patterned stamp (EPS), which includes channels formed to separate each element with patterns, low-viscosity resin droplets with a nano-liter volume are dispensed on all elements of the EPS. Following pressing of the EPS, the EPS is illuminated with UV light to cure the resin; and then the EPS is separated from several thin patterned elements on a wafer. Experiments on UV-NIL were performed on an EVG620-NIL. 50 - 70 nm features of the EPS were successfully transferred to 4 in. wafers. Especially, the wafer deformation during imprint was analyzed using the finite element method (FEM) in order to study the effect of the wafer deformation on the UV-NIL using EPS.
-
Recognizing emotion in speech is required lots of spoken language corpus not only at the different emotional statues, but also in individual languages. In this paper, we focused on the changes speech signals in different emotions. We compared the features of speech information like formant and pitch according to the 4 emotions (normal, happiness, sadness, anger). In Korean, pitch data on monophthongs changed in each emotion. Therefore we suggested the suitable analysis techniques using these features to recognize emotions in Korean.
-
SFF(solid freeform fabrication) is another name of RP(rapid prototyping). The SFFS for office type wishes to develop system that can produce small object such as hand phone, cup, accessory etc. with high speed, and also intend suitable system in office environment by compact design, and buy easily by inexpensive price. As can manufacture high speed in existent SFF process technology, representative process that have competitive power in price is 3DP (three dimensional printing) technology. The 3DP technology is way to have general two dimensional printing technology and prints to three dimension, is technology that make three-dimensional solid freeform that want binder doing jetting selectively on powder through printer head. We designed and manufactured SFFS for office based on 3DP process technology design and manufactured, and composed head system so that use 3 printer heads at the same time to improve the fabrication speed of system. We used printer head of INCJET company and cartridge used HP45 series model who can buy easily in general city. And we directly fabricated three dimensional solid freeform using developed SFFS for office type.
-
The structures of airplane consist of sheet metal part, heavy machined part, and so on, which generate enormous amounts of cutting chip when these parts are machined. The cutting chip detoriorates the part quality and production efficiency. Therefore, cutting chip collecting apparatus is necessary for better quality and efficiency. In this study, blowing type cutting chip collecting apparatus was newly proposed and the concept design of the apparatus was examined through numerical analysis. Computations using the mass-averaged implicit 2D Navier-Stokes equations are applied to predict the nozzle flow field. The standard k-e turbulent model are employed to close the governing equations. Consequently, this study shows that the suggested blowing type cutting chip collecting apparatus can be alternative to existing expensive chip collecting apparatus.
-
Walking training is one of the most important rehabilitation processes with paralysis patient. Walking training by using an orthosis can help advancing a patient's independent level. However, existing orthoses have some serious demerit of mechanical problem that the knee joint is locked in the state where it is completely extended, which increases energy consumption and fatigue. For this reason, it is suggested, for more practical orthosis, that the knee joint should be placed and it should have capability of suspending patient's weight. In this paper, 1-DOF walking orthosis which compensates the demerit of the existing orthosis and secures patient's mobility has been proposed. New orthosis has been designed under the following two premises. First, the knee joint of the orthosis was designed fold in order for the orthosis to move in a walking pattern similar to that of a normal person. Second, the knee joint was designed to extend during the swing phase and lock safely during the stance phase.
-
A mechanical type pulsation dampener for the diaphragm metering pump has been developed. The pulsation pressure is an inevitable phenomenon for the positive displacement pump such as cam operated or solenoid operated metering pump. The pulsation pressure of the metering pump could be the noise source and would be harmful for the piping system which delivers hydraulic fluid. Developed pulsation dampener consists of three coil springs which have different spring constant and height each other. Depending on pressure magnitude of the piping system, total hydraulic pressure on damping diaphragm which compresses coil springs will be varied. Force equilibrium of the pulsation dampener will be set by manual by adjusting the compressed coil spring height. During the discharge stroke, pulsation dampener stores potential energy that is released as the pumping diaphragm back to an initial position during the suction stroke.
-
This paper presents the mechanism to increase lateral stability of a mobile robot using an energy stability margin theory. Previous measure of stability used in a wheeled mobile robot has been based on a static stability margin. However, the static stability margin is independent of the height of the robot and does not provide sufficient measure for the amount of stability when the terrain is not a horizontal plane. In this work, the energy stability margin theory, which is dependent on robot's height is used to develop a 2 dof mechanism to increase lateral stability. This proposed mechanism shifts the center of gravity of the robot to the point where the energy stability margin is maximized and overall stability of the robot equipped with this mechanism will be increased.
-
Unexpected postoperative changes, such as growth in rib hump, has been occasionally reported after corrective surgery for scoliosis. However there has been experimental data for explanation of these changes, nor the suggestion of optimal correction method. This numerical study was designed to investigate the main correlating elements in operative kinematics with post-operative changes of vertebral rotation and rib cage deformation in the corrective surgery of scoliosis. To develop a scoliotic spine model automatically, a special program for converting normal spine model to scoliotic spine model was developed. A mathematical finite element model of normal spine including rib cage, sternum, both clavicles, and pelvis was developed with anatomical details. The skeletal deformity of scoliosis was reconstructed, by mapping the X-ray images of a scoliosis into this three dimensional normal spine and rib cage model. The geometric mapping was performed by translating and rotating the spinal colume with the amount analyzed from the digitized 12 built-in coordinate axes in each vertebral image. By utilizing this program, problems generated in mapping procedure such as facet joint overlapping, vertebral body deformity could be automatically resolved.
-
The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces of the ankle joint during the waist pulling, and to assess the ankle joint reaction forces according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 cameras, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and joint reaction forces during the recovery of postural balance control. From the experiment using falling mass perturbation, joint moments were larger than those from the experiment using air cylinder pulling system with milder perturbation. However, JRF were similar nevertheless the difference in joint moment. From this finding, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movement of flexion or extension or compensating joint reaction force with surrounding soft tissues. Therefore, biomechanical analysis of human ankle joint presented in this study is considered useful for understanding balance control and ankle injury mechanism.
-
In this study, the concept of autonomous mobility is applied to a gait support mobile robot. The aim of the development of the service robot is to assist the elderly with gait rehabilitation. This study proposes an ergonomic service robot design parameter. The gait assistant path pattern is derived from analysis of the elderly gait. A lever is installed in the AMR in order to measure both the pulling force and the leading force of the elderly. The path generation of the mobile robot is developed through consideration and analysis of elderly gait patterns. The ergonomic design parameters (dimensions, action scope and working space) are determined based on moving scope of the elderly. The gait assistant mobile robot was offered the elderly guide service and internet service based on the ergonomic design parameters.
-
At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.
-
A new cell-cross bridge mechanics model is proposed to analyze the mechanics of heart muscle. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. Ion transports across cell membrane initiated by action potential induce excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to compute the tension of cross bridge closely related to ion dynamics in cytoplasm.
-
The purpose of this study is to develop a Multi-joint rehabilitation system (CMRS : C&R Lab. Multi-joint Rehabilitation System). This study presents the mechanism of rehabilitation system that enables rehabilitation of multi-joint with kinematical analysis for joints of human body. Also, the relative positioning between human subjects and the head part to rehabilitate for the mechanism is based on robotics and anatomy. This study was verified with simulations. Finally, Automation of positioning was realized. Rehabilitation exercises in passive mode were enabled with the results.
-
A new pump used in arthroscopy surgery was developed. The pump is driven by pneumatic air compressor and controlled by a stepper motor connected to an air regulator. Pressure control performance was observed to be similar compared to commercially available artheroscopy pumps. However, pressure pulses observed in the commercial pumps driven by multiple rollers disappeared in the pneumatically driven pump. The new pump required containers to enclose and squeeze saline solution packs. A dramatic saving in manufacture cost is expected considering the simple pneumatic drive used in this pump.
-
The purpose of this study is to evaluate the possibility of identifying joint damping property through commercially available isokinetic ergometer (BIODEX). The proposed method is to estimate the damping torque of the knee joint from the difference between the external joint torque for maintaining isokinetic movement and the gravity torque of the lower leg. The damping torque was estimated at various joint angular velocities, from which the damping property would be derived. Measurement setup was composed of the BIODEX system with an external force sensor and Labview system. Matlab was used in the analysis of the damping property. The experimental result showed that the small variation in angular velocity due to acceleration and deceleration of the crank arm resulted in greater change of inertial torque than the damping torque, so that the estimation of damping property from the isokinetic movement is difficult.
-
High temporal-resolution and accurate measurement of skin impedance locus provides useful data for the identification of the physiological/psychological changes and also the identification of acupuncture point. An impedance spectroscopy method using digitally constructed current waveform consisting of many frequency components (multiples of 1Hz) was reported3. The time resolution of the method depends on the lowest frequency used in the waveform construction, and therefore, the measurement would be faster if the lowest frequency is the higher. However, it was not clear that how many and how low frequencies must be used for the estimation of the skin impedance parameters from which the impedance locus can be drawn. This study shows the relationship between the estimation error of the impedance parameters and the frequency coverage of the spectroscopy. The results of this study are expected to serve as the reference of the frequency selection in the impedance spectroscopy.
-
To investigate the bone remodeling phenomenon around screw tooth of the implant for osteointegration, a finite element model of the screw was developed. Strain energy density was chosen for the indicator for remodeling process. The modified mathematical equation for remodeling process was applied to 2-dimensional tibia and implant model under static bending state Caculated results show reliable remodeling process compared with histology data.
-
In the future, a machine-tool will be more improved in the form of a knowledge evolution based device. In order to develop the knowledge evolution based machine-tool, this paper proposes the structure of knowledge evolution and the scheme of a dialogue agent among agent-based modules such as a sensory module, a dialogue module, and an expert system. The dialogue agent has a role of interfacing with another machine for cooperation. To design of the dialogue agent module in M2M(Machine To Machine) environment, FIPA-OS and ping agent based on FIPA-OS are analyzed in this study. Through this, it is expected that the dialogue agent module can be more efficiently designed and the knowledge evolution based machine-tool can be hereafter more easily implemented.
-
As many humans age, degenerative lumbar spinal stenosis (DLSS) becomes a major cause of lower limb discomfort and disability. By surgical treatment method of DLSS, the existing surgical treatment methods using internal fixation have showed degeneration changes of an adjacent vertebrae and loss of lumbar spine lordosis-kyphosis due to eliminating a motion. For solving the problems of internal fixation, a novel interspinous spacer has been developed to treat DLSS by surgical treatment method. In this study, we evaluated the biomechanical effects of the interspinous spacer on the kinematics of the porcine lumbar spine before and after insertion of the implant. For this purpose, a device that is capable of measuring 3-D motions were built based on direct linear transformation (DLT) algorithm written with MATLAB program. Results showed that in extension, a change of the mean angle between the intact and the implanted specimens at L4-L5 was 1.87 degree difference and the implant reduced the extension range of motion of the L4-L5 (p<0.05). But the range of motion in flexion, axial rotation and lateral bending at the adjacent segments was not statistically affected by the implant. In conclusion, we thought that interspinous spacer may have remedical value for DLSS by flexing human lumbar spine.
-
High-heeled women have been identified with balance control problems. The purposes of this study were to objectively quantify the displacements and velocities of center-of-pressure (COP) of body during waist pulling and to compare the differences between barefooted and high-heeled situations. We used a waist pulling system which has three different magnitudes to sway the subjects. We found that the kinematic information of barefooted and high-heeled women's COP is very important in understanding the mechanism of postural balance control of women in every-day life. In the high-heeled's case, the displacement of COP increases in 200% as against bare footed. Also the velocity variation of COP grows three times than the bare footed. COP analysis in postural balance study of high-heeled women is also considered useful in development of the safety systems that prevent high-heeled women from falling
-
Cell adhesion to any material surface is considered to be fundamental and important phenomenon in the fields of tissue engineering. Cell adhesion molecules, mechanism, and attachment force have been studied and described a lot. However, the effects of mechanical stimuli on the adhesive forces still have been left much to be investigated. In this study, to investigate the changes in cell adhesive force due to resting time period during the intermittent hydrostatic pressurizing (IHP), cells were cultured under the IHP with various resting times. Then the cell adhesive forces were measured quantitatively utilizing a cell detachment test system and immunofluorescent staining was performed using fluorescent microscopy. In the results, immediately after mechanical stimuli (150 minutes after seeding) and one hour later (210 minutes after seeding), the average adhesive force of experimental group 5 (resting time: 15min) compared with that of control group at same culture time was increased significantly (p<0.05). The results indicated that IHP can contribute in improving cell adhesive force and some of time intervals were required for the expression of cell response.
-
In this study, we developed a method classifying slice shot during golf practice using backpropagation algorithm. The 144 data based on the backpropagation model(11 inputs, 2 outputs) was used as a learning set and the model was verified based on the extra 50 data in the process to predict a slice shot in golf swing. The results showed 100% separating rate of learning set and 91.5% separating rate of verified set. The developed method can be potentially beneficial for the predicting of slice shot in an indoor golf excercise setting without applying any additional equipment.
-
The robotic shoe testing system that mechanically simulates human motion was proposed to overcome the problems associated with human subject tests. The objective of this study is to predict new motion trajectory for robot that will produce similar force and moment of particular human motion. In order to solve this problem, it is imperative to understand the dynamics of robot for shoe testing. The methodology using parameter estimation technique was proposed for this problem. Since the dynamics of robot is certainly different from that of human, it is necessary to adapt/modify the robot's trajectory for future analysis, which is currently under investigation.
-
We analyzed the impulse on 24 sensors location under the foot using the Parotec system for the investigation of the relationship between the shoe type and the foot pathologies. Total 7 kinds of shoes, i.e. sport shoe, high heel shoes (5cm heel, 8cm heel, 13cm heel), platform shoe, inline skate, and heelys were evaluated for 20 normal subjects. Compared with the impulse distribution of the sport shoe, greater impulses were shown at the 1
$^{st}$ phalange and the 1$^{st}$ metatarsal-phalangeal head in high-heel shoes, lateral tarsal bone and medial metatarsal bone in platform shoe, medial tarsal bone in inline-skate, and medial tarsal bone and 1st phalange in heelys shoe. The result of this study is expected to provide useful information about the relationship between the shoe type and the foot pathologies.ies. -
The purpose of this study is to design electrical stimulation system for pharyngeal dysfunction(dysphagia) in stroke patients. Pharyngeal muscle group activity is important, because contracting muscles provide the driving force at the initiation of the swallow and generate the pressure gradients necessary for bolus movement into the esophagus. Although we have many treatment methods for dysphagia, electrical stimulation system will be useful for stroke patients having dysphagia. Electrical stimulation can be divided into the body stimulation and electrodes. The body stimulation is divided again into frequency counter, time control and current measurement part. These parts are to control the current intensity, frequency and stimulating time. And they can be variable according to the patient's clinical assessment. The electrode plays a role to deliver the current from the system to the muscle. Also the position of the electrode can be variable according to the treatment method. We performed the clinical experiment with the stroke patient who has swallowing disorder. The videofluoroscopy was used for the observation. From the result of clinical experiment based on electrical stimulation, we expected that the dysfunction(in pharynx) level of the patient can be improved. However we could not have enough effectiveness of the treatment because of the number of patients, patient's adaptation and treatment period. We will design the optimized electrical stimulation system based on enough clinical experiment in the future.
-
The object of this study is to develop a model of the cardiovascular system capable of simulating the short-term transient and steady-state hemodynamic responses such as hypotention and disequilibrium syndrome during hemodialysis or hemofiltration. The model consists of a closed loop 12 lumped-parameter representation of the cardiovascular circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes and 3 compartmental body fluid and solute kinetic model. The hemodialysis model includes the dynamics of sodium, urea, and potassium in the intracellular and extracellular pools, fluid balance equations for the intracellular, interstitial, and plasma volumes. We have presented the results of many different simulations performed by changing a few model parameters with respect to their basal values.
-
For agile production methods, manufacturing system requires development of a motion controller which has flexibility of general-purpose motion controller and productivity of specialized-purpose one. In this study we developed the Flowchart Programming development environment for Motion language and Process Control. The controller designed on this environment can be used as a general purpose motion controller of a machining tool. Design of control programming based on a flowchart has the advantage of reducing the time consumed and intuitive interface for users. We create the solution with the Microsoft Visio for the flowchart-based platform and OPC for the process communication..
-
In the last year, the number of registered vehicles in Korea surpassed the 14 million mark, and increase in number continuously. Nowdays, this tendency has raised some problems inevitably in the view of expansion of ELV and earth environment pollution resulted from it. Currently, the domestic recycle rate of ELV is about 75%. the reason of the row rate of it is due to that dismantling company can not obtain the needed recycling technology. State of art for recycling technology of ELV in domestic & foreign was introduced.
-
The functional external fixator system for bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints in legs. The FE model using the compressive and bending FE analysis was applied the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm, the bending stiffness value in experiment was 259.74N/mm, compressive stiffness value in FEM was 188.67N/mm, bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).
-
BMI(brain machine interface) has been recently applied to give a disabled person mobility. This study is to determine the effective EEG parameters for predicting the movement moment of body limbs thought analysis of moving averaged ERD. The results showed that the proposed method for classifying EEG for predicting the movement seemed to be better than the classical method of determining ERD.
-
-
Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.
-
A cycloidal speed reducer is a type of the speed reducers of machinery. The cycloidal speed reducer consists of two cycloidal plate gears, housing roller gear, input shaft, output pin and shaft, and eccentric bearings. Especially the cycloidal plate gear has the peculiar parts of the teeth, because of gearing with the housing roller gear that has the several rollers on the circular line. And then all teeth on the cycloidal plate gear can be designed to contact with the rollers on the housing roller gear at the same time. Therefore the cycloidal plate gear has always contact motion with rollers and the force is interacted between roller gear with cycloidal plate gear. Because the contact force and friction force must be required to improve the accuracy in design procedures of cycloidal speed reducers, this paper presents a force analysis considered friction effect approach derived by static force equilibrium condition, geometrical adaptation, instant velocity center method and relative velocity method.
-
With increasingly wide needs for a new energy source, many operation types of a wave-forced generation have been studied. To obtain an economically avaliable energy, it is imperative that the speed of the in put wave should be increased by a proper mechanism. In this study, we propose a new speed-increaser mechanism for the wave-force generation using a well-known Stephenson mechanism. In this paper, we have analysed kinematically the proposed speed-increasing mechanism. then a computer program based on the C++ language is developed to prove the validity of our mechanism and to simulate a wave-forced generation.
-
The mechanism design is synthesis of suitable mechanism which can be output motions about input motions. That has generally two steps which are the type synthesis and the dimensional synthesis. And required mechanism analysis step for confirming middle or final result. The type synthesis is definition of mechanism type which required aim and the dimensional synthesis is calculation of dimension about defined type mechanism. The type synthesis of mechanism is included qualitative design field which isn't defined systematic design method. especially, the most difficult step for mechanism design automation. In this paper proposed the component modular design method which is figured mechanism types automate with component modules using component modular approach. And develop CAD(Computer Aided Program) program for application.
-
The objective of this research work is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a pyramid shape and woven metal are employed as an internally structured material. In order to investigate the characteristics, the specific stiffness and failure map are estimated using the results of three-points bending test. From the results of the experiment, the influence of design parameters of ISB panel on the specific stiffness and failure mode has been found. In addition, it has been shown that ISB panel with expanded metal is prefer to that with woven metal from the view point of optimal design for ISB panel.
-
Several workers reported the relationship between osteoporosis and age-related reductions in the BV/TV (bone volume fraction) of vertebral trabecular bones. However, there were few micro finite element (micro-FE) models to account for the treatments of the osteoporotic trabecular bone. In the present study, micro-FE models of osteoporotic and hormone-treated bone models were constructed to analyze the effect of specimen location and boundary condition on mechanical characteristics of hormone treatment model for osteoporotic trabecular bone. Top and bottom sections of specimens were also investigated individually to study the effect of specimen location. Hormone-treated models were allowed to have the same relative BV/TV (13.4%) as that used in models of previous researchers. The present study reported the elastic and plastic characteristics of the osteoporosis and hormone-treated bone models. In the present study, in-situ boundary condition was applied to the simulated compression tests for in-vivo condition of vertebral trabecular bone. The present study indicated that the hormone therapy was likely to improve the mechanical characteristics of osteoporotic bones and the mechanical characteristics of vertebral trabecular bone specimen were dependent on the captured location and boundary condition.
-
The high voltage driving system with multi-phase shifter including piezoelectric actuators comprised a driving power unit for outputting the driving power by converting input alternate current into direct current, a frequency shifting unit for supplying the direct current power and shifting or generating a frequency, a high-voltage amplification unit for amplifying the input signal outputted from the driving power unit and the frequency shifting unit into a high-voltage signal, and a phase shifting unit for shifting the phase difference of the amplified signal applied to the high-voltage amplification unit and driving plural piezoelectric actuators sequentially. The results that the operating voltage was stable, the voltage loss ratio was low and the response velocity was fast could be obtained. An experiment on performance of the high voltage driving system with multi-phase shifter designed and manufactured as above described was conducted by using a piezoelectric pump having 3 sheets of round unimorph piezoelectric actuators laminated respectively in a rectangular case. It sucks any fluid by causing the first piezoelectric actuator to shift from the inlet porter side, the phase delay of 60
$^{\circ}$ causes the second piezoelectric actuator to begin to shift, and the phase delay of 120$^{\circ}$ causes the third piezoelectric actuator to begin to shift. As a result of measuring each change in the outlet flow rate of the piezoelectric pump, it was shown that the frequency-flow rate characteristic, the voltage-flow characteristic, and the load pressure-flow rate characteristic were improved. -
A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene(PVDF-TrFE). The large difference of coefficient of thermal expansion(CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a large deflection with relatively small temperature rising. Compared to the most conventional micro actuators based on MEMS(micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. The proposed actuator can find applications where a large vertical displacement is needed while keeping compact overall device size, such as a micro zooming lens.
-
Exposure System is used for printing a prescribed pattern on a printed board, a liquid crystal substrate or the like. In this paper we are trying to develop projection Optics Exposure System for manufacturing Color Filter of LCD Display. This paper explain the Projection Optics Design and Illumination Optics Design of Color Filter Exposure system.
-
Selective Laser Sintering(SLS) method is one of Rapid Prototyping(RP) technologies. It is used to fabricate desirable part to sinter powder and stack the fabricated layer. To develop this SLS machine, it needs effective scanning path and the development of scanning device. This paper shows how to make fast scanning path with respect to scan spacing, laser beam size and scanning direction from 2-dimensional sliced file generated in commercial CAD/CAM software. Also, we develop the scanning device and its control algorithm to precisely follow the generated scanning path. Scanning path affects precision and total machining time of the final fabricated part. Sintering occurs using infrared laser which has high thermal energy. As a result, shrinkage and curling of the fabricated part occurs according to thermal distribution. Therefore, fast scanning path generation is needed to eliminate the factors of quality deterioration. It highly affects machining efficiency and prevents shrinkage and curling by relatively lessening the thermal distribution of the surface of sintering layer. To generate this fast scanning path, adaptive path generation is needed with respect to the shape of each layer, and not simply x, y scanning, but the scanning of arbitrary direction must be enabled. This paper addresses path generation method to focus on fast scanning, and development of scanning system and control algorithm to precisely follow generated path.
-
A real object duplication system (RODS), including three dimensional (3D) scanner and solid freeform fabrication system (SFFS), is a device to make three-dimensional objects directly from the drawing or photo data. A Selective Multi-Laser Sintering (SMLS) process designed in this paper is by which computer images received using 3D scanner are built up from polymer powder on building room of large size using dual laser at industrial type SFF system. Using the process can rapidly produce real object duplication components of industrial type such as cylinder, engine block, chassis of automobile, etc. In this paper, the industrial type SFF system using SMLS process is manufactured and the system is satisfied with high precision and high speed processing technique. To research characteristics of each part for theindustrial type SFF system, a structure and thermal analysis and test of each part is carried out. Also, to achievement of high performance for industrial type SFF system, design and fabrication for the structure, heater, nitrogen supply, laser and control part are carried out.
-
We developed a symmetrical upper limb motion trainer for chronic hemiparetic subjects. This trainer enabled the practice of a forearm pronatio
$n^ ination and wrist flexion/extension. In this study, we have used functional magnetic resonance imaging(fMRI) with the developed symmetrical upper limb motion device, to compare brain activation patterns elicited by flexion/extension wrist movements of control and hemiparetic subject group. In control group, contralateral somatosensory cortex(SMC) and bilateral cerebellum were activated by dominant hand movement(Task 1), while bilateral movements by dominant hand(Task 2) activated the SMC in both cerebral hemispheres and ipsilateral cerebellum. However, in hemiparetic subject group, contralateral supplymentary motor area(SMA) was activated by unaffected hand movement(Task 1), while the activation of bilateral movements by unaffected hand(Task 2) showed only SMA in the undamaged hemisphere. This study, demonstrating the ability to accurately measure activation in both sensory and motor cortex, is currently being extended to patients in clinical applications such as the recovery of motor function after stroke.ke. -
This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.
-
This paper proposes a new simplification algorithm that simplifies reconstructed polygonal mesh from 3D point set considering an original point set. Previous method computes error using mesh information, but it makes to increase error of difference between an original and a simplified model by reason of implementation of simplification. Proposed method simplifies a reconstructed model using an original point data, we acquire a simplified model similar an original. We show several simplified results to demonstrate the usability of our methods.
-
Nano-scale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate easily by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin damaged layer rapidly forms in the substrate at the diamond tip-sample junction along scanning path of the tip and simultaneously the area uncovered with the damaged layer is being etched. This study demonstrates how the TNL parameters can affect the formation of damaged layer and the shape of 3-D structure, hence introducing a new process of proximal nanolithography in aqueous solution.
-
In this paper, a fault diagnosis system for ram in PHWR plant is developed. The developed diagnosis system can detect the ram stuck phenomena due to increased ball wear and damage in ball nut using discrete wavelet transform before the ram is stuck. The validity of developed diagnosis system is shown via experiments using ball nut characteristic test equipment.
-
A bogie frame of welded type have some problems. Some end beam has cracked. The cracks have profound influence on the safe freight service. The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, and running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance and the running safety. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the existing bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one. In this reports, the vibration characteristics were dealed with the most pressing matters for the solution of the end beam crack.
-
An underwater robotic system has been developed and applied to visual inspection of reactor vessel internals. The Korea Electric Power Robot for Visual Test (KeproVt) consists of an underwater robot, a vision processor-based measuring unit, a master control station and a servo control station. The robot guided by the control station with the measuring unit can be controlled to have any motion at any position in the reactor vessel with
$\pm$ 1 cm positioning and$\pm$ 2 degrees heading accuracies with enough precision to inspect reactor internals. A simple and fast installation process is emphasized in the developed system. The developed robotic system was successfully deployed at the Younggwang Nuclear Unit 1 for the visual inspection of reactor internals. -
The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties or from structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites), was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz~12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test showed little shielding effect.
-
This paper describes the result of structure analysis of body structure. The purpose of the analysis is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. Body structure consist of side frame, under frame, roof frame, end frame. FEM analysis is based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000 ' and reference code is JIS E 7105. The analysis results have been very safety and stable for design load conditions.
-
This paper presents a development of the control algorithm and Pick & Placer. The Pick & Placer provides a powerful multi-task system that includes both graphical and remote interface. Users can easily set up sorting parameters and record important data including wafer number, data, and operator information. This System sets up a dustproof device and massively machined components to provide an extremely stable sorting environment. Precise resolution and accuracy result from using machine vision, a pneumatic slide drive and close -looped positioning.
-
Recently, Study on measuring property of a micro thin film(nm ~ hundreds of ) under Thermal Mechanical loading. In this work, We perform tensile test at high temperature(1200 ) to investigate mechanical properties of alumina TGO formed under Thermal Barrier Coating. We used Digital Image Correlation method for measuring displacement, and We presented a method of tensile test for thin film at high temperature.
-
An aspherical lens in information technology has been increased in order to enhance the optical performances. There are two kinds of approaches to machine the aspherica surface is generally conducted by the diamond turning machine, precision grinding machine, and polishing machine. This technique, however, has a problem which needs an expensive and high precision machine in order to increase the surface roughness and the machining accuracy. In this paper, a machine, which is able to machine the aspherical surface, was developed to decrease the cost. Also, the machining of the aspherical surface using a cone was carried out experimentally in order to compare the experiment with the simulation. The results showed that the machining experiments of the aspherical surface by using the titled cone were in accordance with the simulation.
-
In recent year, OLED(organic light emitted display) is used as the next generation device of FPD. OLED have been replacing the flat panel display device such as LCD, STN-LCD and TFT because this device is more efficient, economic and simple than those FPD devices, and this need not backlight system for visualization. The performance and efficiency of OLED is related with surface defect of ITO coated glass substrate. The typical surface defect of glass substrate is nonuniformity and bad surface roughness. ITO coated glass substrate is destroied for inspection about surface roughness and non-uniformity. Generally detection of the defects in the surface for ITO coated glass substrate is dependent on operator's experience. In this research, relationship between working parameter and surface non-uniformity is studied using regression analysis.
-
In this paper, a prototype of agent-based engineering system is developed based on the AADE (autonomous agent development environment), a FIPA compliant agent platform. By applying several advanced technologies including software agents, Internet/Web, workflow and database, the developed prototype system is able to successfully fulfill our target of integrating personnel, design activities and engineering resources along a predefined engineering design project (workflow). A software prototype is implemented to integrate various engineering software tools including CAD, structural analysis (FEA), dynamic analysis, fatigue analysis. A wheel-axle-assembly (part of a bogie system) is chosen as a test case for the validation of the prototype system.
-
There is a need for fundamental understanding of biotribological characteristics of various biomaterials sliding against biological materials in order to develop a moving mechanism of medical microsystems having high energy efficiency. A special experimental equipment was designed and built to study the frictional behavior of various biomaterials sliding against a small intestine specimen of a pig. Friction experiments for six biomaterials were performed. Particularly, the effects of load and speed on frictional behavior were investigated. The results of this work will aid in the development of the actuator for a self-propelling micro-endoscope.
-
A scheme to control the laser power and the exposure time was studied to fabricate precise microstructures using the nanostereolithography (nSL) process. Some recent works have shown that a three-dimensional (3D) microstructure can be fabricated by the photopolymerizing process which is induced by two-photon absorption (TPA) with a femtosecond pulse laser. TPA provides the ability to confine photochemical and physical reactions within the order of laser wavelength, so neardiffraction limit features can be produced. In the nSL process, voxels are continuously generated to form a layer and then another layer is stacked in the normal direction of a plane to construct a 3D structure. Thus, fabrication of a voxel with low aspect ratio and small diameter is one of the most important parameters for fabricating precise 3D microstructures. In this work, the mechanism of a voxel formation is studied and a scheme on the control of laser power and exposure for minimizing aspect ratio of a voxel is proposed.
-
For many years and primarily for economical reasons, Dissimilar Metal Welds have been used as transition joints in a variety of equipment and applications. But Dissimilar Metal Welds have several fabrication and metallurgical drawbacks that can often lead to in-service failures. For example, the most pronounced fabrication faults are hot cracks. Laser welding techniques have been characterised for various materials. In this paper, the laser weldability of STS304 stainless steel and SM45C at dissimilar metal welds using a continuous wave Nd:YAG laser are experimentally investigated. An experimental study was conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, power, beam speed, shielding gas, and wave length of laser were tested
-
This study is designed integration and control system of GaAs bonding system consisted of multi-processing using DeviceNet and GEM-Protocol. Developing bonding system is composed of resin coating, pre-baking pre-aligner, bonding, material handler(flip robot), and wafer cassette, etc. This system has process-fluent of each a process and share information using GEM-protocol. This study devised virtual bonding simulator to control and to monitor bonding system efficiently. Also we can verify optimizing of system previously through a virtual bonding simulator.
-
The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.
-
In these days, wear resistance is an essential condition because the relative movement between machine parts is being accelerated and those connected with the drive parts transmit power and force. Also wear resistance is closely related to reliability and life of products, therefore the study on friction and wear is very important in many fields. In this paper, wear test was conducted to know properties about friction and wear of manganese phosphate being used widely. Test type is 1 ball on disk and we compared manganese phosphate thin film with non-coated material. Through this study, we could know the effect of this surface treatment method, and then it is assumed that the reliability of parts will be secure.
-
In the present industry, three-dimensional colored shape has required for realistic prototype in rapid manufacturing. Z-corporation developed 3D printer which can color three-dimensional prototype but this process can't be adopted to other rapid prototype products and spend much time and cost coloring 3D shape. In this study a new coloring process on three-dimensional surface is proposed for realistic prototype. Three-dimensional surface coloring apparatus is composed of HP ink jet head and X-Y plotter. Distance and angle between ink jet nozzle and 3D surface are set as process parameter. Based on the experiment of process parameters, it is shown that distance and angle affected on printed image on 3D surface. Circle and line shape are chosen as standard image shape because the shape has widely used as standard in 2D printing. Consequently, the distorted image on 3D surface is corrected by transformed input image data.
-
Company perform a lot process to produce products. If company try to satisfy for customer and improve technological competition, they must be changed to new system. As a result, we developed knowledge based smart search system and customized it to PDM system on commercial use. In this smart search system, wherever process designer can seek to result quickly. This will be upgraded for be applied to some company.
-
This paper proposes a new approach for the shape design of the rotating outer-ring type epicycloid plate gear by using instant velocity center. First, this method defines the instant velocity centers for rotating outer-ring type epicycloid plate gear and calculates the contact angles and the contact points by using the geometric relationships and the kinematic properties of the reducer. Second, it generates the full shape of the cycloidal plate gear. Finally, the paper develops CAD-program for construction of the design automation using the proposed method. This CAD-program is developed to have the functions of the friendly user interface and the simulation of the real operation for the cycloid reducer.
-
Algorithms on modification of NURBS surface requires modeling history to change its boundary conditions. The history is stored when the surface is modeled and saved in the corresponding model file. But when the model is transferred to other systems the history generally cannot be recognized. So modification algorithms without history is highly required. Previous works on the field is concentrated in the point based modification without any restriction condition. Therefore this study is intended to develope a curved based modification algorithm with restriction conditions. A rapid modification algorithm is suggested, implemented and tested.
-
The Resolver usually used in industry is the absolute angle analog sensor that must be in order to driving BLDC (brushless DC) motor, and it needs RDC(Resolver-to-Digital converter) for changing the output signal to digital to be applied to the SVPWM(Space Vector Pulse Width Modulation) algorithm. Commonly used S/W RDC needs trigonometric function. What it takes a lot of calculation time of processor is gotten at weak point. In this paper, S/W RDC is realized except trigonometric functions as a result of feedback resolver outputs after filtering using FIR filter. thus, processing time is reduced. So, One-chip DSP Controller operating the Vector Control, RDC, and SVPWM can be designed.
-
Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.
-
A thick-layered RP process, transfer-type variable lamination manufacturing using expandable polystyrene foam (VLMST) has been developed to have the advantageous characteristics such as high building speed, low cost for introduction and maintenance of VLM-ST apparatus, and little staircase surface irregularities of parts. However, VLM-ST has difficulty fabricating an axisymmetric shape and a large-sized freeform shape because of the limited sloping angles and small build size. The objective of this paper is to develop a multi-functional hotwire cutting system using EPS-foam (MHC). MHC employs a four-axis synchronized hotwire cutter with the structure of two XY movable heads and a turntable. In order to examine the applicability of the developed MHC apparatus, an axisymmetric shape, a polyhedral shape and a large-sized freeform shape were fabricated on the apparatus.
-
High speed machining experiment on the heat-treated mold steel(STAVAX and CALMAX of hardness HRc 53) is carried using TiAlN coated ball endmill. Tool life and wear characteristics under the various machining parameters and cooling methods are investigated. Effect of cooling method on life and wear of the tool was compared. For most cases, tool life was not determined by the amount of wear but by th chipping on the cutting edge. It is found that tool manufacturer's cutting parameters generally agrees with the results of this experiment.
-
A new design for deburring tools for intersecting holes is introduced. The tool tip is mounted on a slender cantilever assembled into a circular shank. The tool tip has been design to cover ranges of exit angle and diameter ratio between intersecting holes. The design is an improvement over the previous ones by the authors. Experiments have been performed on AL6061. With the new design, mild exit burrs with exit angles greater than 45
$^{\circ}$ are successfully removed. For large burrs with smaller exit angles, however, the deburring could be incomplete. -
Recently, a dangerous event occurred at the field industry and mechanical system. At developed by SUNGGOK corp. a R-L clutches of a small and high capacity serves safety device from a variety environment of mechanical system, it permits transmission of driving torque form input to output shaft in both directions of rotation, but restrains any feedback torque of the driven load from rotating the output shaft in either direction. This study was carried out to demonstrate through finite element methode and durability estimation for safety of the R-L clutches without sliding during the engagement process. As results, we organized about endurance test methode when applied rated torque.
-
CFRP composite materials have wide application in structure materials of airplane, ships, and aero space vehicles because of their high strength and stiffness. This paper is to study the effects of curvature and orientation angle on the penetration characteristics of CFRP laminate shell. They are staked with 8 Ply specimens [0
$_2$ /90$_2$ ]$_{s}$ , [0/90$_2$ /0]$_{s}$ and the stacked of outer plates degree with 12 Ply specimens [0$_3$ /90$_3$ ]$_{s}$ , [0$_2$ /90$_2$ /0]$_{s}$ and [90$_3$ /0$_3$ ], [90$_2$ /0$_2$ /90]S. They are manufactured to varied curvature radius (R=100,150,200mm and$\infty$ ). They are cured by heating to the appropriate harding temperature(13$0^{\circ}C$ ) by mean of a heater at the vaccum bag of the autoclave. Test specimens were prepared with dimensions 100mm$\times$ 140mm. When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistic-screen sensor located a known distance apart. In general, kinetic energy after impact-kinetic energy before impact rised in all specimens. This study observed a fracture mode inside the specimen after a penetration test using a digital camera and it examined a fracture mode and a penetration mode to stack of outer orientation angle and curvature.rvature. -
Shearing including punching, blanking, trimming, slitting, etc is one of the most frequently used processes in sheet metal manufacturing. It has been widely used for manufacturing autobody, electronic components, aircraftbody, etc. In this paper, it has been researched by the experiment to examine the effect of burr height corresponding to die clearance, cutting angle, tool sharpness, etc. This paper presents the experimental results with using Al alloy sheet.
-
For the OLED evaporation process, thin film thickness uniformity is of great practical importance. In order to achieve the better thickness uniformity, geometric simulation of film thickness distribution profile is required. In this paper, a geometric modeling algorithm is introduced for process simulation of full-color OLED evaporating system. The physical fact of the evaporation process is modeled mathematically. Based on the developed method, the uniformity of the organic layer thickness can be successfully controlled.
-
This study is concerned about the design and development of three dimensional bending machine. The purpose of this study is design and development of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. Based on this study, the three dimensional bending machine was developed. In order to evaluate a performance and reliability of the developed three dimensional bending machine, we used laser interferometer and three axial measuring system.
-
Sandwich structures, which are composed of a thick core between two thin faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the application of a particular sandwich structure, various types of cores can be used. The production of sandwich sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we have studied the embossing structure of sheet type and developed embossing roll mold with
$\Phi$ 3 pattern and roll forming system. -
Companies of Build-to-Order(BTO) strive to achieve customer responsiveness and cost efficiency simultaneously. The success of BTO depends upon the high volume production based on product plat form and delayed differentiation principle on the one hand, and upon the rapid estimation of delivery and cost for the customer orders on the other hand. Expeditious processing of a specific order requires the rearrangement of production resources and the schedule, which results in increased cost. This paper describes a cost estimation method using activity-based costing depending on the schedule change caused by urgent customer orders.
-
A new method to fabricate metal electrodes on side wall of the microchannel is presented. Coulter counter allows to count the number of cell passing through the microchannel by detecting impedance variation between two electrodes. The relative position of two electrodes is important for sensitivity of impedance measurement. 100nm thick Al electrodes are deposited on the channel side wall by means of shadow evaporation.
-
Micro spherical lens mold processing method based on mechanical one completes a spherical shape by setting a diamond tool of hundreds
$\mu$ m radius on spins with high speed and then using Z-axis vertical feeding motion like the fabrication of micro drilling. In this method, we can see unprocessed parts shaped like cylinder and cone and check increasing chatter marks and burrs by setting errors of the central axis of rotation on the edge of the tool. That is why this method doesn't suit for the optical lens mold. In this paper presents unprocessed parts are disappeared and chatter marks and burrs are decreased from centre of the lens after using Run-out measuring and setting system on run-out occurred from setting tool. Also the fabrication characteristics of 6:4 Brass, A1601, PMMA are compared and analyzed, establishing the optimum machining condition on each material. -
This paper addresses the development of inverse compensation techniques for a class of ferromagnetic transducers including magnetostrictive actuators. In this work, hysteresis is modeled through the domain wall theory originally proposed by Jiles and Atherton[1]. This model is based on the quantification of the energy required to translate domain walls pinned at inclusions in the material with the magnetization at a given field level specified through the solution of an ordinary differential equation. A complementary differential equation is then employed to compute the inverse which can be used to compensate for hysteresis and nonlinear dynamics in control design.
-
This paper describes map building for the path planning to avoid obstacles with vision sensor and ultrasonic sensor. We get the 2 dimensional information from the processed images of CCD sensor and 1 dimensional range information from ultrasonic sensor. I proposed a way to generate the map which contains these two kinds of information in the program. And we made the biped robot which have 20 DOF with these sensors and get good experimental result to prove the validity of the proposed method.
-
LMTT (Linear Motor-based Transfer Technology) is horizontal transfer system in the maritime container terminal for the port automation. The system is driven by PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car. This paper investigates the effect of the drop height of container on impact reaction force of the Impact Absorber (IA) in shuttle car for LMTT. The results of this investigation are obtained from detailed finite element analysis for various parameters, such as the spring coefficient, the drop height of container.
-
Purpose of this paper is to accummulate database of automotive steel sheet from mild steel to high strength steel in cold rolled steel sheets. Physical properties, mainly mechanical properties, of steel sheet are tested and all data are arranged to one sheet. Methods of test are composed of FLD, tensile strength test, chemical composition, surface roughness and product conditions. Finally this database will be helpful to automotive body designers and die designers to design automotive body parts and tools in a material point of view.
-
In this study, the crash analysis was carried out to evaluate the influence of steel sheet grade and thickness on weight reduction and crash characteristics for front side member which had an important role of absorbing the impact energy during front and side impact. In order to achieve the aim of this study the reverse engineering was applied to obtain 3D model of front side member from BIW for the FE simulation. In the result, the crashworthiness of front side member is considerably improved with steel sheet strength and thickness increase. Also, the weight reduction in automotive parts for the improvement of the fuel efficiency can be easily achieved with applying high strength steel without deterioration of crashworthiness.
-
In this paper, resonant ultrasound spectroscopy(RUS) was used to determine the natural frequency of a spherical and a aspherical lens. The objective of the paper is to evaluate defect and shape error by using nondestructive evaluation method with Resonant Ultrasound Spectroscopy(RUS). The principle of RUS is that the mechanical resonant frequency of the materials depends on density, and the coefficient of elasticity. We evaluated existence of flaws through comparison with resonant frequency of a spherical and a aspherical lens. The spherical glass lenses were made of BK-7 glass, one's diameter in 2mm and 5mm. The polished spherical glass lenses had no deflection or a deflection below 2.0
${\mu}{\textrm}{m}$ . Also, The aspherical lens were made of same material and ones diameter in 7mm and thickness in 3.4mm. In the experiment, we were performed to investigate relationship between frequency measuring parameter($\beta$ ) and mass of each specimens. The difference between resonant frequency and mode of aspherical glass lens which has no defect was distinguished from aspherical glass lens which has some defects. -
The paper persents an efficient method of extracting line segment in a grid map. The grid map is composed of 2-D grids that have both the occupancy and orientation probabilities based on the simplified Bayesian updating model. The probabilities and orientations of cells in the grid map are continuously updated while the robot explorers to their values. The line segments are, then, extracted from the clusters using Hough transform methods. The eng points of a line segment are evaluated from the cells in each cluster, which is simple and efficient comparing to existing methods. The proposed methods are illustrated by sets of experiments in an indoor environment.
-
Errors resulting from magnification variations of optical system are largely generated in three-dimensional shape measurements. In the case of measuring the surface morphology of tiny objects based on DFF, images are acquired with a very small interval and then magnification changes are minimized. However, the magnification variations are actually existed in optical system and so focus measures in DFF are wrongly or ambiguously extracted. in this paper, a methodology based on DFF with the magnification changes is proposed to make more accurate measurement in surface morphology with high depth discontinuity, compared with previous ones. Several experiments show that the proposed method outperforms existing ones without magnification changes.