The Biomechancial Effects of an Interspinous Spacer Implant on 3-D Motions for the Treatment of Lumbar Spinal Stenosis

요추부 척추관 협착증 치료를 위한 극돌기간 삽입술의 3차원 분석을 통한 생체역학적 효과 분석

  • Published : 2004.10.01

Abstract

As many humans age, degenerative lumbar spinal stenosis (DLSS) becomes a major cause of lower limb discomfort and disability. By surgical treatment method of DLSS, the existing surgical treatment methods using internal fixation have showed degeneration changes of an adjacent vertebrae and loss of lumbar spine lordosis-kyphosis due to eliminating a motion. For solving the problems of internal fixation, a novel interspinous spacer has been developed to treat DLSS by surgical treatment method. In this study, we evaluated the biomechanical effects of the interspinous spacer on the kinematics of the porcine lumbar spine before and after insertion of the implant. For this purpose, a device that is capable of measuring 3-D motions were built based on direct linear transformation (DLT) algorithm written with MATLAB program. Results showed that in extension, a change of the mean angle between the intact and the implanted specimens at L4-L5 was 1.87 degree difference and the implant reduced the extension range of motion of the L4-L5 (p<0.05). But the range of motion in flexion, axial rotation and lateral bending at the adjacent segments was not statistically affected by the implant. In conclusion, we thought that interspinous spacer may have remedical value for DLSS by flexing human lumbar spine.

Keywords