Proceedings of the Korean Society of Precision Engineering Conference (한국정밀공학회:학술대회논문집)
Korean Society for Precision Engineering
- Semi Annual
- /
- 2005-8446(pISSN)
Domain
- Machinery > Precision Machines
1993.10a
-
황준;남궁석 22
The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions. -
ball screw is a critical machine component which dictates the precison of a given machine tool. The conventional manufacturing method requires the heat treated ball screw to be ground to its final dimensions. This study looks into the the feasibility of replacing the grinding process with a simpler process, namely threading on NC lathe. The purpose is to reduce the capital investment as well as production time in the manufacture of ball screws. Ceramics and CBN cutting tools are compared with respect to their ability to machine hardened steel. It is shown that CBN tools can be successfully utilized to machine precision ball screws with superior suface qualities.
-
This paper presents development of a pratical tool deflection compensation system in order to reduce the machining error by the tool deflection in the end-milling process. The system is a tool adapter which includes 2-axis force sensor for detecting tool deflection and 2-axis tool tilting device for adjusting tool position through computer interface in on-line process. In experiments, it is revealed that the force sensor applying parallel plate principle and strain gauge is proper to obtain dynamic process signal, and the tilting device using stepping motor and cam drive mechanism is suitable to have necessary action. By the system and control algorithm, it is possible to get precise machining surface profile without excessive machining error and overcut generated due to increased cutting force in more productive machining condition.
-
볼랜딩 하는 것은 모든제품의 다양한 형상을 얻어내는데 필수적이라 할 수 있다. 여기에서는 볼랜딩하는 방법에 있어서 형상의 변화가 쉽고 간결하게 할 수 있는 새로운 방법으로서 교차곡선을 구한 후 교차곡선을 따라가며 꼬이지 않는 평면을 설정하여 작업자에 의하여 주어지는 반경과 조정점의 위치를 조정하는 방법으로 볼랜딩하는 방법을 제시한다. 본 논문에서는 자유곡면과 자유곡면의 볼렌딩,자유곡면과 다면체곡면의 볼랜딩하는 방법을 제시한다.
-
In this study, the inclined endmilling process with a 3-axis machining center using inalined jigs is introduced for the purpose of reducing overall Dies/Molds machining time and improving the machining accuracies. In order to analyse the cutting mechanism of a given endmill more accurateky, the unification of the cutting mechanism model of 3-different-kind endmills is examined by using the mose radius as a parameter. By adding radial runouts as a parameter which influences on surface roughness, the superposition method which defines the effective cusp heigh superposing the cutter mark height and the conventional cusp height is modified. And 3-D surface topography predicted in this paper looks like the surface normally observed in practice. Through machining experiments, the adequacy of the superposition algorithm was confirmed.
-
The charactistics of AE(Acoustic Emission) signal is related to cutting conditions, tool materials and tool geometry in metal cutting. The tool geometry change which is derived from tool wear affects the source of AE signal in machining process. The relationship between AE signal and tool wear was experimentally investigated. THe value of RMS(Root Mean Sequare) and Amplitude of AE signal were increased in tool wear condition. Also the high value of Count per Hit and Count vs. Frequency was observed in this condtion. As a result, tool wear can be effectively detected by AE signal during cutting operation.
-
최근의 생산시스템은 FMS,FMC와 같은 고도로 자동화된 무인시스템으로 운용되고 있으며, 생산성 향상을 위한 무인운전의 필요성이 증대되고 있으나, 숙련된 작업자를 대신하여 작업상태를 감시하는 신뢰성 있는 감시 시스템의 부족으로 인해 곤란을 겪고 있다.따라서 작업자를 대신할수 있는 신뢰성있는 감시 시스템의 개발을 필요로 한다. 특히 공구파손,공구마멸과 같은 공구손상은 공작물 및 기계에 치명적 손상을 초래하고, 기계정지시간을 증가시키므로 공구파손 검출과 공구마멸의 실시간 센싱은 가공 프로세스의 자동화와 신뢰성을 증가시키는데 가장 중요한 역활을 수행한다. 본 연구에서는 드릴가공시 검출한 주축 및 Z축 모터전류를 기초로 하여 드릴마멸을 추정하는 모델을 개발하고자 한다.
-
Chatter vibration is an unwanted phenomenon in metal cutting and it always affects surface finish, tool life machine life and the productivity of machining process. The In-process monitoring & control of chatter vibration is necessarily required to automation system. In this study, we constructed the multi-sensing system using Tool Dynamometer,Accelerometer and AE(Acoustic Emission) sensor for the credible detection of chatter vibration. And a new approach using a neural network to process the features of multi-sensor for the recognition of chatter vibration in turning operation is proposed. With the back propagation training process, the neural network memorize and classify the feature difference of multi-sensor signals.
-
간접적인 방법으로 가공중(In process)공구상태를 감시하기 위해, 센서신호를 분석하는 방법으로 시간영역 (Time Domain) 해석과 주파수 영역(Frequency Domain)해석이 주로 이용되어 왔다. 시간영역해석의 경우 RMS,PEak Value, 평균/분산을 이용한 정적분석과 AR 모델, ARMA 모델, Kalman Filter등 동적 시계열 모델이 연구되어 왔다. 주파수영역해석의 경우 푸리에 변환 (Fourier Transform)에 의한 신호해석 기술이 주로 이용되고 있다. 그러나 푸리에 변환된 결과에는 시간정보가 포함되어 있지 않고, 국부적인 변환결과가 전체를 대표하는 성질을 가지고 있다. 이에 비해 웨이브렛(Wavelet) 변환은 고주파성분에 대해서는 시간분해능이 높고, 저주파 성분에 대해서는 주파수분해능이 높은 다중해상도 해석기술로서 국소적인 변동점을 민검하게 검지하는 것이 가능하다. 본연구에서는 엔드밀 가공중 발생하는 공구의 파손을 검출하기 위해, 전류센서로 부터 얻은 이송축 부하 전류의 변화에 웨이브렛 변환을 통해 공구의 파손을 검출하는 방법에 대한 연구결과를 소개한다.
-
본 연구는 드릴가공중 발생하는 드릴비트(Drill Bit)의 파손검출에 적합한 센서를 선택하고, 드릴비트 파손시 나타나는 센서신호의 특성에 대한 연구를 수행했다. 연구결과 이송축 전류신호 및 주축진동신호가 절삭시 나타나는 Power 및 진동의 특성을 잘 나타내고 있으며, 드릴비트의 파손을 판단할 수 있는 특징의 보완적 요소가 강하다는 결론을 얻었다.
-
Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite elment method is impossible for a very small focused region and mesh size. As the altermative method, Molecular Dynamics or Statics is suggested and acceoted in the field of microcutting, indentation and crack propagation. In this paper using Molecuar Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.
-
최근들어 공작기계의 급속한 발전은 절삭작업의 자동화와 무인화를 가능하게 만들었으며 이에따라 절삭가공의 완전한 무인화를 실현하기 이해서는 절삭가공중 발생하는 각종 이상 상태를 in-process로 감시하고 검출하는것이 매우 중요하게 되었다. 이상상태는 절삭공구의 마모나 파손, 채터진동의 발생, 절삭가공에 방해를 주는 절삭칩등을 들수 있으며 이 같은 현상을 검출하기 위한 많은 연구가 활발히 진행되고 있다. 본 연구에서는 내식성,내마모성,내열성 및 기계적 성질이 우수하거나 절삭시 가공 경화성이 크고, 열 전도성이 불량하며, 공구재료와 응착이 쉬어 난색재로 알려지고 톱니형 연속칩이 주로 발생하는 STS304를 선택하여 절삭실험을 하였다. 절삭 조건에 따른 칩 형태를 관찰하여, 절삭조건과 절삭력을 이용하여 칩의 형태를 분류하였으며, 절삭가공중에 칩형태를 검출 할수 있는 가능성에 대하여 연구 하였다.
-
본 연구에서는 볼 엔드밀을 사용한 5축 가공에서 공구 간섭회피를 위한 효율적인 알고리즘과 가공 가능한 많은 자세들 중에서 공구 절삭부위와 이전자세를 고려한 공구 자세설정 알고리즘을 개발 하였다. 공구 간섭검사는 공구 밑면 간섭과 몸체 간섭으로 나누어 순차적으로 수행하고, 공구 몸채 간섭이 없는 공구 자세를 설정한다. 공구 몸체 간섭검사는 곡면의 다각형 모델과 공구 축과의 관계를 사용하여 행한다. 간섭이 발생하였을 경우 간섭회피 및 자세조정 영역으로 설정하고 유효한 공구자세의 범위를 정한 후, 이 범위 내에서 공구 절삭 부위 및 이전 자세를 고려한 효율적 공구자세를 사용하여 공구경로를 산출하였으며, 시뮬레이터를 통해 그 유효성을 검증하였다.
-
When machining a die cavity, many machining conditions must be considered. Especially when using a NC machine, The tool interference is a improtant problem. In this paper, we consider the tool interference of free-formed surfaces and analytic compound surfaces which having free_formed base and many primitives and present a method checking the tool interference regions and avoiding them
-
This experimental study mainly deal with the single and multi-insert cutting characteristics using coated tool. Because metal cutting of the single and multi-insert has a large relation to the improvement of productivity, the economic cutting process can be achieved by the analysis of proper metal cutting mechanism. Therefore, machining characteristics of face milling in this paper has been studied by investigating the role of different insert number which is concerned with mean cutting force, the RMS values of AE(acoustic emission) signal, tool life and surface roughness in milling SS 41 and SUS 304.
-
The carbon fiber epoxy composite materials have some problems, for example, seperation between carbon fiber and epoxy, delamination of lamina etc. Also, the tool wear is very serious. Therefore, we need to improve the shape of drill and condtion of drilling if possible. In this study, machinability of the carbon fiber epoxy composite materials in drilling was experimentlly investigated to establish the efficient shape of drill.
-
The various geometry of tap been developed in order to tap special workmaterial at considerably higher cutting speed than that of the conventional HSS tap. In this paper a piezo type tool dynamomerer is constructed and used to measure the torque. The experimental tests are run with various cutting speed. It is clarified that the process of chip formation strongly depends on rake angle, relief angel, angel of twist.
-
소경드릴가공은 많은 기계가가공중에서도 가장 곤란한 가공의 하나이다.그것은 가공구멍단면 이하의 공간속에서 공구강성이나 칩처리들이 고려되어야 한다는 엄격한 제한이 소경이란 형태에서 한층 어려워지기 때문이다.소경의 구멍가공은 최근 전자제품,우주항공기 부품,소형정밀부품, 섬유산업의 광섬유관련품 등에 까지 수요가 증가함에 따라 레이져가공,전자빔가공,전해가공과 같은 전기물리적가공법이 많이 사용되고 있지만 생산성 및 가공정밀도의 관점에서 만족스러운 결과를 얻을 수 없는 실정이다, 이에반해 기계가공인 소경드릴가공은 공구강성저하로 인해 쉽게 파손된다는 점은 있지만 가공정도가 양호하고 종횡비가 높은 가공이 가능하여 실용화가 가장 좋은 분야라고 할수 있다. 이로 인해 최근에는 여기에 관한 많은 연구가 지행되고 있다. 또한 기계가공의 자동화가 진전됨에 따라서 단일공국의 대표적 공구인 바이트의 결함을 검출하는것 못지않게 드릴의 마멸이나 절손의 검출 또는 예측이 중요한 문제로 부각됨에 따라 절삭저항의 이용이 증가할 것으로 생각된다. 따라서 본 연구에서는 ADI에 포함된 Si량이 드릴가공시 ADI의 피삭성에 미치는 영향을 절삭조건을 변화시켜 고찰함과 동시에 공구수명에 대하여 고찰하였다.
-
오늘날 전자산업, 광학기계,미세노즐 및 오리피스, 정밀공구,게이지, 고밀도 PCB 기판등 각종 산업에서 미세구멍 가공기술이 요구되고 있다. 이러한 구멍 가공에 사용될 수 있는 기술로는 드릴 가공의 기계적 가공방식 이외에 레이져가공,전자빔가공, 방전가공등의 열적가공방식과 전해가공,전해연마,화학부식의 화학적가공 방식이 있겠으나 생산성, 가공표면의 정도, 심혈가공의 어려움 등의 이유로 미세드릴을 이용한 기계적인 가공방법이 선호되고 있다. 본 연구에서는 미세구멍/가공시 가공토크에 미치는 중요 변수들의 영향을 실험을 통하여 조사하여 높은 절삭성을 발휘하는 동시에 공구의 파손도 피할 수 있는 조건을 제시하였다.
-
진공챔버,위생튜브등 정밀한 내면을 필요로 하는 경우 표면거칠기를 향상시키기 위한 방법으로 전해가공 및 수작업을 하는 경우가 대부분인데 이는 가공비가 비씨고 다듬질 시간이 많이 걸리는 등 매우 비경제적이다. 더구나 길이가 긴 관이나 구부러진 관의 내면은 기계적으로 다듬질이 매우 어렵다. 그러나 최근에 개발된 전자기장을 이용한 자력 연마가공법은 기존의 기계적인 가공법과는 달리 실제 가공을 행하는 공구부와 ㅣㅇ를 구동하는 구동부 사이에 공극을 허용하기 때문에 이를 이용하여 회전이 불가능한 곡관의 내면다듬질을 가능하게 하였다. 지금까지 연구들은 단순히 전자석 및 전원으로 이루어진 수동가공 시스템으로서 가공공정 자체의 특성파악에 집중되어 왔으나 자력연마법의 장점중의 하나인 다듬질 공정의 자동화 가능성을 실현시키기 위해서는 공정의 제어가 필요하다. 본 연구에서는 이를 실현시키기 위한 기초연구로서 컴퓨터구동 회전자력연마가공 시스템을 개발하고 그 기본특성을 알아보기 위해 유한요소법을 이용하여 원형 요오크 및 여섯개의 자극에 대해 자력선의 분포를 알아보았다. 또한 이로부터 가공영역의 자속밀도를 계산하고 다듬질 가공을 가능케 하기위한 회전자화의 발생방법에 대해 고찰하였다.
-
Recectly, development of expert system utilizing the domain specific knowledge focuses upon the machining operations. This paper describes an expert system for selecting the optimum grinding wheel based on the Analytic Hierarchy Process and Fuzzy Logic. Knowledge-base, in this system, for selecting of grinding wheel is designed to appling the knowhow and experience knowledge of skilled hands. In this paper, firstly determination method of fuzzy membership function utilizing the qualitative knowledge, and then selection of the optimum wheel from among the available components according to Saaty's priority rule are described. Lastly,some implementation results are suggested.
-
In heavy grinding that is on of the high efficient grinding method, meaningful deformation is generated by high temperature. So, after machining, geomeric error generated od the workpiece. The most important factor on the geometric error is temperature difference between upper layer and lower layer (T
$_{d}$ ) . Relations between Td and grinding condition and maximum geometric error and grinding condition are obtained by experiment. This relations are used in fuzzy algorithm for improvement geometric accuracy. The main results are follows : (1) The linear relation between maximum geometric error and grinding condition is ovtained by experiment. (2) The linear relation between maximum temperature difference between upper layer and lower layer and grinding condition is ovtained by experiment. (3) Control peth of wheel for improvement geometric accuracy is obtained by using the fuzzy algorithm.m. -
연삭가공은 숫돌의 입자가 마멸,파쇄,탈락,생성의 과정을 반복하면서 가공하는 것으로 연삭과정은 사용하는 연삭숫돌의 종류, 드레싱조건,연삭조건 등의 인자에 영행을 받는다. 더욱이 연삭숫돌의 연삭성능은 연삭가공시간의 경과에 따라 변화한다. 이때 요구되는 가공능률과 가공정밀도를 일정하게 유지하기 위해서는 연삭과정을 자동감시하고 이상상태를 진단하는 기술의 확립이 필수적이다. 본 연구에서는 AE를 이용하여 평면연삭에 있어서 연삭숫돌의 종류별(WA계 비트리파이드 및 레지노이드결하ㅂ제연삭숫돌 36종류) 및 연삭조건을 변화시켰을때의 연삭저항 및 AE 신호의 변화등을 In-process 검출하여 연삭가공상태의 자동감시 및 자동이상진단시스템을 위한 AE의 적용 가능성을 검토하였다.
-
최근 산업의 발달과 함께 제품의 고정도화,다양화,생산성 향상등의 요구에 의해 연삭가공에 있어서도 고능률.고정도가공이 주목되고 있다. 특히 반도체산업,광산업 등에 넓게 응용되고 있는 광학소자 가공에서는 가공정도와 가공능률이 동시에 달성되는 것에 대한 요구가 많지만, 이러한 광학소자의 가공에 있어서 기존의 연마방법은 가공정도와 가공능률에 한계가 있었다. 그런데 연삭가공에서 고능률,고정도가공의 한가지 방법으로 "전해 인프로세스드레싱(Electrolytic In-Process Dressing;ELID)연삭법"이 개발되어 고강도 메탈본드숫돌에 의한 초경합금,세라믹재료등의 경취성재료를 고품위 가공하고 있다. ELID연석법이란 숫돌의 다이아몬드나 cBN등의 연삭입자를 결합하고 있는 금속결합재를 전기분해에 의해 적당량 제거하여 일반적인 연삭과 같이 연삭입자를 연속적으로 돌출시켜 가공이 유지되도록 하는 연삭방법이다. 본 연구는 ELID연삭기술을 이용하여 원통연삭에서 철갈재료 및 세라믹재료의 고능률.고정도 가공특성을 살펴보았다. 원통연삭에서의 주철파이바본드숫돌 및 코발트본드숫돌에 의한 ELID연삭과 비트리파이드본드숫돌에 의한 일반연삭과의 고능률 가공특성을 비교하였다.
-
This paper introduces API(Application Programming Interface) development technology for improving design efficiency which is concerned with special product design environment and development lead time of company's own. Even though most companies commercial CAD/CAM/CAE procucts. For reducing procuct development cycles and improving design efficiency. We have to automatize design processes through the standadizarion and parameterization and develop the specialized utilities as a infrastructure. The proposed API development methodology provides improved automatic 2D,3D modeling procedures and useful user interfaces at a small fraction of the cost and design effort.
-
초정밀 공작기계의 구조물은 Sub-micron의 운동정밀도를 갖추어야 초정밀기계로서의 기능이 유지된다. 특히 가공기의 베드구조물은 구동요소간의 상대 위치를 정.동적으로 규정 해주는 중요한 기본구조물이므로 고강성, 고쇠감성,열안정성, 경년변화에 대한 치수의 안정성등의 성능이 요구되며, 이를위해 공간적인 형상 설계 및 구조재의 선정에 고도의 기술이 필요하다. 따라서 본 연구는 낮은 고유진동수의 특성을 갖으면서 하중의 설치높이의 변화에서도 고유진동수가 일정히 유지되고 또한 구조물의 중심변화에 대한 수평조절이 가능하면서 자동제어가 가능한 공기스프링을 초정밀 가공기의 방진시스템으로 활용방안에 대하여 연구하였다.
-
최근 항공,자동차산업을 필두로 해서 가전산업에 이르는 많은 민수산업에서 경량화를 목표로한 연질금속의 소형 가공물이 급격히 증가하고 있고, 특수조건을 겨냥한 세라믹과 복합소재와 같은 신소재의 개발 및 적용이 활빌히 일어나고 있다. 이와 같은 추세는 생산성 향상과 가공면의 고품위화를 동시에 만족하면서 진행되어야 하므로 고속,고능률 가공시스템이 필수적으로 요구된다. 본 연구에서는 베어링의 예압량,회전속도,열팽창이 베어링의 내.외륜 지름변화에 어떤 영향을 미치는지 분석하고 베어링 제조사에서 추천하는 조립공차가 고속주축의 작동조건에 어느정도 타당한지를 분석하였다.
-
Thermal expansion of ball screw in the semi-closed loop type CNC LATHE introduces positioning errors directly along the travelling the axis. In this paper the thermal displacements of the ball screw were estimated by using macro variable. The estimated displacements of the ball screw were given to the ball screw of the CNC LATHE under the constant driving conditions were measured to examine the effectiveness of the compensation method. The results showed that thermal displacements of the ball screw could be maintained less then 6 .mu.m positioning accaracy while using this compensation.
-
Thermal deformation causes large amount of machine tool errors. In order to compensate for thermal and geometric errors of the machine tool an off-line geometric adaptive control (GAC) scheme was developed. THe GAC method was realized by using a measuring plate made of precision spheres. Error vectors and volumetric errors were measured by the measuring plate. Error compensation models were obtained from error vectors and a kinematic chain of machine tools. Reliability of the GAC system of thermal and geometric errors were confrimed by large amount of experiments.
-
In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode, shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two dimensional rigid-plastic finite element method using various type of elements and numerical integration schemes. AS metal forming examples, upsetting and backward extrusion are taken for comparison among the methods : various element types and numerical integration schemes. comparison is made in terms of stability and efficiency. As a result, it has been shown that the finite element computation is stabilized from the viewpoint of computational time, convergency, and numerical instability.
-
The automatic forming sequence design system can determine desirable operation sequences even if they have little experience in the design of cold forging process. This system is proposed,which generates forming sequence plans for the multistage cold forging of zxisymmetrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning processes. Forming sequence for the part can be determined by means of primitive geometries such as cylinder,cone, convex, and concave. By utilizing this geometrical characteristics(diameter,height, and radius),the product geometry is expressed by a list of the pnmitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. The preliminary choice of some feasible forming sequences can verify by using the finite element simulation.
-
The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.
-
A 2-dimensional FEM/GEM program was developed for analyzing forming processes of an arbitrarily shaped draw-die, in which plane strain condition is assumed and linear line elements are employed. FEM formulation adopted a new algorithm for solving force equilibrium as well as non-penetration condition simultaneously. For the case of numerical divergence at nearly final forming stages and the initial guess in Newton-Raphson iterations, geometric force equilibrium method(GEM) is also introduced. The developed program was tested with the simulation of stamping processes of automotive bonnet inner pannel in order to verify the usefulness and validity of FEM/GEM formulation.
-
An UBET(Upper Bound Elemental Technique) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner and plane-strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, from which the upper-bound forging load, the flow pattern, the grid pattern, the veocity distribution and the effective strain are determined. To show the merit of flashless forging, the result of flashless and flash forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.
-
Closed-die forging of spur gears with hollow cylindrical billet has been analysed by using the upper-bound method. A kinematically admiccible velocity field has been developed. wherein, an involute curve has been introduced to represent the forging die profile. In the analysis, the deformation regions have been divided into nine zones. A constant frictional stress has been assumed on the contacting surfaces. Utilizing the formulated velocity field, numerical calcuations have been carried out to investigate the effects of various parameters, such as module, number of teeth and friction factor,on the forging of spur gears.
-
To disign and build a ultra-precision laboratory which has been required for high technology in many areas, the environmental parameters such as temperature, humidity,vibration and nosic are controlled precisely. To absorb the outside vibration, particular concrete blocks were designed and set under the laboratory. The inside room temperature were controlled in local area within .+-. 0.3 .deg. c. It was efficient to induce laminar flow in air conditioning system for the control of room temperature, humidity etc. The control conditions should be determined according to their specific purposes. Also, the control method will be different for their respective environmental conditions.
-
In the cluster tool, it is necessary to precisely control the vacuum pressure for the wafer transportation between transport module and cassette or process with the range of 10
$^{-4}$ to 5*10$^{-5}$ torr. So we have designed the pressure control system for the transport module of the cluster tool and have evaluated its performance. Digital PID is utilized with the weighted sum of both three previous errors and one current error. The feedback signal is put into the nitrgen mass flow controller using the transport module controller. This pressure control system can prevent the transport module from the particle generation and backstreaming of hazardous process gases of the process chamber. -
New methodology for fiducial alignment is proposed to improve the alignment accuracy in wafer steppers. The positioning error is detected by PSD(Position Sensitive Detector)when 2-dimensional vernier patterns on a reticle on a reticle are projected on the fiducial marks of wafer stage. The width and period of vernier patterns are deter mined to get the highest S/N ratio for the exposure wavelength 248.4nm of KrF excimer laser. This new method has an advantage of higher accuracy and faster alignment over the conventional one.
-
In order to respond to the increasing demands of ultraprecision positioning mechanism in the field of precision engineering, more accurate stages are needed whose positioning uncertainty should be in the unprecedented level of nanometers, while maintaining a long travek range. For this application, most conventional stage mechanisms are found not suitable, so the concept of dual servo, which uses two different servos, is one of the new design and control strategies being extensively investigated these days, This paper presents a fine motion mechanism as a part of research on the dual servo control. The stage is made of a single structure of elastic flexure, whose xy .theta. motions are induced in the form of elastic deformation activated by three piezoelectric actuators. Experimental results show that the translational and rotational motions of the stage can be controlled with resolutions of 5 nm and 0.1 arcsec, respectively.
-
This study proposed a new autofocusing method for a high resolution microscope with a depth of focus of a submicron range. The experimental setup was characterized by nulling method for bi-cell prhotodiode which had two active areas on sensor surface. The optical systems used in this method had was very simple and was easily matched to microscopes which had used widely. It was shown that the resolution was very high (about 20 nm) by experimental results. This method can be used in the semiconduct industry because it can find defects on the silcon wafer.
-
This paper describes a 3-dimensional profile measurement method which was intended especially for sheet metal products such as shadow masks. The method is based upon machine vision in which the height variation of the surface is measured by software auto-forus image processing techniques. The method is found suitable for flexible surfaces with interrupt.
-
This paper presents the performance and problems in analysis method and testing system of Electronic Speckle Pattern Interferometry (ESPI) method, in measuring two-dimensional in-plane displacement. The anyalysis result of measurement by ESPI is quite comparable to that of measurement by strain gauge method. This implieds that the method of ESPI is a very effective tool in non-contact two-dimensional in-planc strain analysis. But there is a controversal point,measurment error. This error is discussed to be affected not by ESPI method itseif, but by its analysis scheme of the interference fringe,where the first-order interpolation has been applied to the points of strain measured. In this case, it is turned out that the more errors would be occured in the large interval of fringe. so, this paper describes a computer method for drawing when the height is available only for some arbitary collection of points, the method is based on a distance-weighted, least-squares approximation technique, with the weight varying with the distance of the data points.
-
Conventional measurement methods for non-destructive testing(NDT) in nuclear power plants other industrial plants have been performed as the methods of contact with objects to be inspect, but those methods have been taken relatively much time to be inspected. Holographic interferometry which is a non-contact optical measurement method using a coherent light can overcome these demerit, and also has an advantage that the quantitative measurement of small deformation for large areas can be accomplished at a time with high precision. In this paper the comparisons of the experimental results from holographic interferometry with those form the finite element method(FEM) and the analytical solutions of elastic equation are discussed.
-
This paper presents a precision automatic measuring system for ball screw Pitch. Ball screw is mounted on a precision indexing table, and the ball screw pitch is measured via magnetic scale, where the indexing and measurement are performed by a PC. For precision indexing of ball screw, direct driven motor is coupled to the designed dead and live centers; the performance of the centers are assessed with a precision master sylinder,such as radial motion,tilt motion, and axial motions. An error compensation model is constructed for the measurement system of ball screw pitch, where the error motions of indexing system as well as the scale measurement system are combined to give the measurement error for the ball screw. The developed system proposes an automated precision measurement system for manufacturers and users of ball screw.
-
The classical way to improve the control performance is studied on the aspects of gun/turret deive systens. Two ways are discussed comparadively ; electrical case and electro-hydraulic case. System parameters are analytically studied in terms of resonance frequencies, and damping and gear train ratio effects are checked in relation to resonance frequency increase. Benefit of the feedback is discussed to increase the damping of the natural frequency lending to bandwidth increase.
-
In ground vehicles, the increasing demand for safety and ride comfort which are trade-off relation, especially at high speeds, has led to the development od actively controlled suspensions. The LQG/LTR controller can be used to design a robust feedback control system that deals with disturbance rejection properties as well as insensitivity to modelling errors and sensor noise. And when the disturbance can not be measured but is limited within a certain frequency range, a bandpass feedback to eliminate the disturbance response can be used. In this paper, hybrid controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the hybrid control system is compared with that of an LQG/LTR controlled system.
-
A 1/4 car model(2 DOF system) is employed to evaluate the performance included a quadratic cost functional in frequency domain. The design procedure of feedback control to optimize the performance index results in a modified Linear-Quadratic-Gaussian problem and cultivates a quite simple control algorithm. Computer simulation result is shown that the LQG method using frequency shaped performance index is outstanding in ride comfort and its response converges to the steady state very rapidly in comparison with the known passive suspension, classical design methods LQR/ and LQG.
-
In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan,Circular Test Method by Knapp and r
$_{- \theta}$ Mathod by Tsutsumi etc., but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units. In this paper, in use of magnetic type linear scale with resolution of 0.5 .mu. m and tick pulses come out from computer, it has become possible for detecting of linear displacement of radial errors and measuring of revolution angle of circular motion of NC machine tools. -
This paper presents an useful technique for error assessment of CMM with simple gauges such as step gauge. A computer module for measurement path generation is implemented,where the appropriate measurement sequences are generated in terms of DMIS file format for CMMs of CNC mode. After the CNC codes are downloaded into CMMs, the measurement operations are performed, and the error analysis are followed. Positional errors, angular errors are successfully measured with high precision along the 3 axis in relatively short time. The squareness error is also assessed with the step gauge measurement data. The developed system has been practically applied, and showed good performance.
-
In order to maintain the cutting force at a desired level during peripheral end milling processes in spite of variation of the depth of cut and other machining conditions, a feedrate override. Apaptive Control Constraint (ACC) system are developed. Feedrate override was accomplished by a developed MMC board and PMC interface techniques. Nonlinear model of the cutting process was linearized as an adaptive model with time varying paramrters. Integral type estimators were introduced for on-line identification of cutting and control parameters in peripheral and milling processes. Zero Order Jold (ZOH) type degital control methodology which uses pole-placement concepts was applied for the ACC system. Performance of the developed ACC system was confirmed on the vertical machining center equipped with FANUC OMC for a large amount of experiment
-
This study presents an algorithm and related techniques which could satisfy the important properties of check weighers and conveyor scales. The algorithm of Recursive Least Squares Regression is applied for the weighing system simulated as a dynamic model of the second order. Using the model and the algorithm, model parameters and then the mass being weighed can be determined form the step input. The performance of the algorithm was tested on a check weigher. Discussions were extended to the development of noise reduction techniques and to the lagged introduction of objects on the moving plate. It turns out that the algorithm shows several desirable features suitable for microcomputer assisted real-time signal processing, which are high precision and stability in noisy environment.
-
In this paper, we introduce an industrial three degree of freedom manipulator which loads/unloads various freight on an AGV(automated Guided Vehicle). We design and implement the industrial controller for the manipulator with P-I) gain variation method. Since this battery-powered manipulator is opten driven in an instufficient power condition, the gravity effects on the robot joints can be a significant problem. The objectives of this paper are twofold : the presentation of a PI)-controller which can compensate the gravity effects, and the design and implementation of an industrial three degree of freedom manipulator for loading/unloading.
-
A study for a lathe to machine workpieces with noncircular corss-sections is presented. The noncircular cutting is accomplished by controlling the radial tool position synchronized with the revolution angle of spindle. A learning control algorithm is suggested for the toll positioning, of which the control performances are analyzed and simulated on a numerical computer that the effectiveness of the control is convinced. The learning control is tested on a NC-lathe which shows successful results.
-
This paper presents a new method based upon the light scattering concept for on-the-machine measurement of roughness of ground surfaces. The present method utilizes fluxes of scattered lights condensed through lenses aligned along the specular direction. A theorctical analysis is preformed for the purpose of investigating the possibility of the method as well as determining the experimental condition. Experiment is also performed to show the effectiveness of the proposed method. The theoretical and experimental results show that the proposed method has a potential to identify a wide range of surface roughness and is robust enough to be useful in on-the-machine measurement of roughness of ground surfaces.
-
최근의 프로세스 공업화에 있어서 생산Line의 장치나 기계류는 점차 대형화, 고속화,연속화,복잡화되고 있다. 또한, 기계가공공업,자동차공업,기계,전자부품의 가공조립등의 생산설비는 각설비가 고도로 자동화되고 있는 실정으로 공장 전체의 유기체적인 제어 및 감독을 필요로 하고 있다. 마찬가지로 기계부품제작산업도 CNC.FMS등으로 점차 조작화,자동화됨에 따라 공작기계 장치나 기계류등의 이상이나 고장으로 생산 및 품질에 미치는 영향도 종래와 비교할 수 없을 정도로 중요시 되고 있는 실정이다, 이와같이 설비의 안전성을 도모하고 고신뢰도를 부여하기위해서는 기계설비의 이상 및 고장진단이 필수적이며, 공장 자동화와 함께 공작기계자체의 고장 및 이상진단을 실시하고, 검출된 신호의 크기등으로 고장상태를 판정해야만 한다. 공작기계에서 동적인 회전시스템을 이루는 주축용베어링의 손상은 제작하고자 하는 제품의 정밀도 표면거칠기등의 저하 뿐만아니라 시스템 전체의 기능까지도 떨어뜨리는 요인이 될수 있으므로 베어링 상태를 진단하여 송상유무를 판단하는것은 필수적이라 생각된다.
-
In this study low priced laser measurement system was made, so its reliability was investigated Intensity distribution of laser beam measured by devised system and FFT analyzer and their results were examined for proving reliability of devised system. Transmitted laser beam intensity on photodiode changed by eccentrically rotating of disk cam and motor speed. To get results, photodiode and devised amplifier were used for changing voltage. After that, response signal was calculated by signal analysis program. It was found that the vibration of disk cam could be measured by the intensity distribution of laser beam and the same tendency was obtained by FFT. Change of motor speed effected the distribution of laser beam,which was obtained by devised system. Also linear distribution was got by sensitive balancing switch on amplifier according to the transmission of laser beam on photodide.
-
Hilbert Transform has been used for detection of nonlinearity in modal analysis. HTD(Hilbert Transform Describers) are used to quantify and identify nonlinearity. Mottershead and Stanway method for identification of N-th power velocity nonlinear damping are extended to P-th power displacement stiffness, N-th power velocity damping and dry friction. Time domain and frequency domain data are used and HTD and Mottershead methods are combined for identification of nonlinear parameters in this paper. Computer simulations and experimental results are shown to verify nonlinear structure identification methods.
-
Measurements of strain near a crack tip with electrical resistance strain gages do not usually provide a reliable value of stress intensity factor (K sub I) because of local yielding and limited regions for strain-gage placement. This paper attempted to define a valid region and to indicate procedures for locating and orienting the strain-gage to determine stress intensity factor accurately from one stain-gage readings.
-
We developed a part of stroke sensing cylinder and its measurement system for system for automatic excavator. In this paper, for development of stroke sensing sylinder, we consist of 2-axis control instrument system with magnetic sensor. A Performence of cylinder rod with magnetic scales is evaluated by its system. Furthmore, the position control for good performance of instrument system is achieved by a sliding mode control which is a new method diminishing the chattering in that control by setting 2-dead band along the swtching line. The unknown parameters for sliding mode control are estimated by the signal compression method.
-
This paper describes the dynamic fracture behavior of brittle materials under impact loading by using INSAMCR program with instrumented charpy test machine. To calculate the Dynamic Stress Intensity Factor The finite element analysis methods program, INSAMCR, was used. Dynamic fracture characteristic was researched to verify a relationship between Dynamic Stress Intensity Factor and crack tip propagation velocity in WC-6%Co. The relationship between Dynamic Stress Intensity Factor and crack tip velocity revealed typical .GAMMA. shape. INSAMCR was run to verify experimental results in WC-6%Co and shows a good coincidence.
-
Die making process is classified into design,manufacturing,polishing,assembly, and performance test. Die polishing is not a machining process by cutting edge of tool, but it is finishing by relative cutting movement under the surface contact between grinding particles and workpiece, and this process comprised 30~40% of total manufacturing hours. However, die polishing process is still performed by the skilled workers. Now a days, it is very difficult to secure skilled workers due to the hardworking environment and this situation will be getting worse in the future which has great difficulty of dies and molds industries.This process has the common problem on the elimination of tedious manual polishing among the tool making industries. Therefore this study is aimed at the development of an automatic polishing attachment which could be attached onthe spindle of CNC machine tool and controlled by the NC program data created by CAD/CAM system. As a result, this study will contribute the realization of automatic fine polishing process and improvement of quality level of dies and molds.
-
The purpose of this paper is to develop an automatic measuring system based on the digital image processing which can be applied to the in-process measurement of the characteristics of the thin thickness. The derivative operators is used for edge detection in gray level image. This concept can be easiliy illustrated with the aid of object shows an image of a simple light object on a dark background, the gray level profile along a horizontal scan line of the image, and the first and second derivatives of the profile. The first derivative of an edge modeled in this manner is () in all regions of constant gray level, and assumes a constant value during a gray level transition. The experimental results indicate that the developed qutomatic inspection system can be applied in real situation.
-
This paper presents design.dynamic modeling and control issues of a novel type of an ER valve-cylinder system incorporating with an electro-rheological(ER) fluid. The yield stress of the ER fluid to be employed to the proposed system is evaluated as a function of applied electric fields. The design and manufacturing process of the ER valve which features fast system response and simple mechanism are undertaken on the basis of model parameters. The governing equation for the hydraulic and pneumatic model is constructed by incorporation with the field-dependent Bingham behavior of the ER fluid. An effective neuro controller is proposed to realize an accurate position control.
-
In the industria; heat treatment fields, some parts of the continous funcae have been automated, but there are not enough interests and achievements for sutomatic charging machine. The automatic charging machine is set up to the industrial mesh belt type continuous furnace which continuously orintermittently charge and extract industrial units for the heat treatments.
-
In order to achieve computer-oriented control and automation of manufacturing processec, a distributed NC (DNC_) system was developed for FMS under the Windows environment. The DNC system consists of conventional DNC, PMC interface and tool management modules. Real-time system conditon monitoring and control fuctions required for machine tools and machining processes were accomplished by developing a PMC interface module called MMC board. Tool condition monitoring and management was performed by the developed tool management module composed of a tool setting probe and softwares. Performance of the DNC system was confirmed on the horizontal and the vertical type machining center equipped with FANUC OMC for the large amount of experiments.
-
In order to minimize turnaround of machining in FMS lines, CAD/CAM/CAT integrated system called MascCAM was developed. Developing enhanced CAM and inspection modules in the MascCAM environment, 2D came, 2
$^{1}$ 2/ D prismatic parts and 3D free-formed surfaces were able to be automatically designed, manufactured and inspected on the machine tools by using AutoCAM and Z-map. Introducing Z-map technique, the MascCAM was able to be interfaceed with and CAD system. Developed QPPGT module generates a quick and fool-proof inspection work to users. A vertical and a horizontal machining center equipped with FANUC OMC were used for experiments. Performance of the system was confirmed by a large amount of experiments. -
An efficient 3-axis NC milling simulator is presented. The geometric simulation of milling is based on z-map structure and voxels. For the graphic simulation,dimetric projection is adopted. As a result, two faces of a voxel are exposed and they are overlapped. Visible faces are determined by using z-butter method. The simulation system is developed in IBM-PC compatible with satisfactory result.
-
In this paper, the fast algorithm to calculate cutting force of milling and its application to NC verification system have been studied. The fast force algorithm can calculate the maximum cutting force fastly during one revelotion of tool. The NC verification using the fast force algorithm can verify excessive cutting force which is the cause of deflection and breakage of tool, and can so adjust the feed rate as to manufacture with the maximum force criterion or maximum machining error criterion. So, the fast force algorithm has been added to the NC verification system, the NC verification system can verify the physical problems in NC code effectively.
-
국제경쟁력 향상을 위한 주요채택전략으로 유연자동화제조시스템의 보급이 급격히 확대되고 있다. 그러나 시스템의 개발.제작과 운영을 담당할 기술자,기술관리자 및 고급기능인의 확보가 전제되지 않는한 성공적인 투자를 기대할 수가 없다. 본 논문에서는 이러한 담당자 양성시 필수과정인 연구개발실험 및 운영실습에 사용될 적정한 유연자동화제조시스템의 개발과정중 일부인 개념설계 및 Layout내용을 정리하여 보고한다. 기본적으로 적정비용으로 일반산업용과 동일한 기능 (Hardware는 경절삭산업용, 소프트웨어는 일반산업용)을 갖춘 시스템으로서 실험 침 실습에 들어가는 비용도 최소화할 수 있도록 설계한다. 또한 System Controller는 시스템 성능향상과 무인가동시간확장에 필요한 소프트웨어 (공구상태감시, 자동측정 및 보정,Dynamic Scheduling등) 의 개발과 실험이 용이하도록 구성하고,산학연 공동연구체제를 구축하여 지속적인 개발이 가능케 한다. 필요시 모든 Source Program도 공개할 예정이다.
-
This study addresses the wear characteristics of electro-rheological(ER) fluids which are potential application candidates for various hydraulic systems. As the first step, three different ER fluids are composed and subsequently tested to observe field-dependent Bingham behaviors. The pin-on-disc testing method is then adopted herein herein to investigate the wear rate of the ER fluids with various base liquids and particle concentrations. In addition, friction coefficients for the ER fluids are evaluated with respect to the normal force.
-
Presented in this paper is the process planning for multi-weldline/multi-pass robot welding. First, downhand welding for welding quality and stability for welding productivity, the two concept of process planning for single-weldling/single-pass robot weldling are derived. Next, process planning procedure for single-weldling/single-pass robot weldling is proposed and the procedure is extended for multi-weldling and/or multi-pass robot welding.
-
Improvement of productivity becomes more and more important issue in today's industries due to the domestic and exterior requirements, but most of small to medium size companies can not positively be cope with such situation. Main reasons are considered to be the difficulties of assembly planning arising from the variety and sophistication of products and the lack of planning experiences. In this study it was intended to show how to establish assembly plans with individual planning functions required in a manufacturing company.
-
최근 제품의 설계와 제조의 동기화를 위해 제품설계 및 공정설계 분양에서 동시공학(concurrent engineering)의 개념을 도입한 부품의 특징형상(feature)에 의한 접근방법이 중요한 과제로 대두되고 있다. 특징형상은 CAD/CAM 통합을 위한 정보전달의 매개체로서 CAPP 시스템 개발시의 CAD/CAPP 인터페이스에 중요한 기능을 가진다. 제조분야에서의 특징형상 적용은 특징형상인식(feature recognition)과 특징형상에 의한 설계 (feature based design)의 두 가지 분야가 있으며, 이 두 분야 모두 특징형상의 상세한 정의와 분류를 필요로 한다. 본 연구에서는 특징형상의 기하학적인 정의 및 분류를 위한 체계를 제시하고, 사출금형의 구성부품을 대상으로 특징형상의 기하학적 속성으로부터 특징형상의 분류기법을 개발한다.
-
This paper focuses on development and implementation of a performance management algorithm for IEEE802.4 token bus networks to serve large-sale integrated systems. The delivery of time critical messages within delay constraints is an important criterion in the design and management of computer communication networks. In order to achieve this goal, the theory of fuzzy sets has been employed to imitate human's reasoning. The Fuzzy Network Performance Manager(FNPM) is composed of two parts: FNPM1 & FNPM2. FNPM1 is solily intended to satisfy the data latencyfor the highest priority while the other part is trying to satisfy those for the lower priorities. The FNPM requires average data latency, throughput, and token circulation time for its inputs. The efficacy of the FNPM has been evaluated by a series of simulation experiments.
-
산업사회의 발달과 급변하는 시장수요로 인하여 제춤의 라이프 사이클이 짧아지고, 이에 따라 제품의 소량, 다품종 생산이 절실히 요구되고 있다. 따라서 생산시스템분야에서는 상품제조의 경비를 절감하고 소비자의 다양한 욕구를 만족시키는 다품종 소량 생산체제로의 전환을 위하여 생산설비의 자동화, 고속화, 유연화를 추구하고 있다. 본 연구에서는 생산 공정에서 직접 활용 가능한 자재취급(Materal handling) 및 기구작업(tool operating)용 직교 3자유도 위치결정용 로보트를 설계, 제작하고 IBM-PC와 인터페이스하여 PID제어계를 구성하여 로보트를 제어하며 특성 실험을 통하여 성능 측정을 하고자 한다.
-
The objective of this study is to develope the reliability prediction model for Float Rated Integrating Gyroscope( :FRIG) at maximum loading. The equation of motion for FRIG is firstly derived to set up the reliability prediction model. To analysis reliability or all parts of the gyro is not easy due to their complicated structure. Therefore the failure parts are chosen by Failure Mode Effective Analysis (:FMEA). F.E.M is utilized to calculate loads for the selseced rotating assembly and pivot / jewel. The technical reliability is calculated by applying reliability design theory with these results and the performance reliability is sought through distribution estimation with error test data. The bulk reliability of gyroscope is sought by applying the two results. The present prediction results are compared with the accumulation time in good agreement.
-
A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO
$_{2}$ Arc Welding using the finite element method. The validity of the above results is demonstrated by experimental elastic stress relief method which is called Holl Drilling Method. The first part of numarical analysis performs a three-dimensional transient heat transfer anslysis, and the second part then uses results of the first part and performs a three-dimensional transient thermo-clasto-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method were used to train a backpropagation neural network to predict residual stress. Architecturally, the finite element method were used to train a backpropagation voltage and the current, a hidden layer to accommodate failure mechanism mapping, and an output layer for residual stress. The trained network was then applied to the prediction of residual stress in the four specimens. The results of predicted residual stress have been very encouraging. -
This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.
-
This paper proposes a high precision measurement technique to obtain the height of gage block. The proposed technique is consisted of two steps : In the first step, laser position transducer and electric micrometer are adopted to obtain a coarse value of the height of gage block, and then, second, heterodyne laser interferometry is adopted to acquire the precision value. The experiment results show that accuract in the order of a few nanometer is achieved for the gage blacks of as high as a few millimeter.
-
To find a way for establishing work roll initial crown according to roll conditions, computer simulation for predicting plate crown in plate mill is done and effects of roll conditions on plate crown is analysed. Roll gap profile and plate crown are measured to be compared to the calculated values. As a result,a regression equation to establish work roll initial crown according to roll cooditions such as backup roll diameter, backup roll crown and work roll crown is obtained.
-
The results were obtained with changes according to the surface roughness of work roll and method to make the peak count on the roll in the temper rolling, and factors to affect to the work roll surface in actual rolling machine(ie. Temper mill). Conclusions are as follows. 1. E.D.T(Electro-discharge texturing)roll is more uniform roughness distribution than shot blasted roll and it's life time is two timees longer than that of shot blasted because it has more sine wave roughness. 2. The higher peak count of surface roughness, the more time is necessary to work roll texturing In shot blasting method, Surface roughness is relating to the grit size,impeller speed and hardness of roll material, But is can't control the peak count. 3. In shot blast texturing, Surface roughness of temper rolled strip which is transfered surface roughness of work roll is more ununiform than that of E.D.T roll 4. E.D.T roll has more uniform than the shot blasted roll and has more peak count than that of shot blasted roll. The surface of painted strip to image clarity is superior to that of shot blasted roll because E.D.T roll has more peak count and smooth surface.
-
The cold rolled strip meets continuously rising demands on the less deviation of thickness at the width direction of their rolled products. Especially, the special interest has been to find the methods to reduce the edge drop which influences seriously on the yield losses and the quality of the rolled products. In this study, the influence of hot coils on the thickness profile of cold rolled strip was analyzed. For obtainint the tapered work roll shig\ft conditions, the thermal crown and the flattening between the work roll and the strip were calculated, and the main parameters which have mostly effects on the edge drop were simulated. Also the obtained conditions from the simulation were applied to Tandem Cold Rolling Mill to investigate the change of the edge drop and the crown ratio depending on the amount of work roll taper and the length of contact of taper. The results of the application led to better thickness profile than conventional one.
-
A computer program has been developed for analyzing the two-dimensional unsteady conservation equations for transport phenomena in the ool region of direct rolling with semi-solid metal in order to describe the velocity and temperature, and the solidification process of the semi-solid metal. The energy equations of cooling roll is solved simultaneously with semi-solid metal in order consider heat transfer through the cooling roll. The FDM(finite difference method) and FEM(finite element method) are used in region of pool and roll, respsctively, to reduce computing time and to improve accuracy of calculation. In the present study, influence of solid fraction and casting speed are investigated in a point of view of strip formability with semi-solid metal.
-
MascMC system is one of the MMC system module which performs measuring and checking of machined workpieces on the machine tools. Accuracy of the MascMC was compensated for developing a reliable measuring system by measurement error calibration. Reference gauges, ring gauges, block gauges,squares, spheres and cylindrical squares, were used for error identification and compensation. .+-. 10 .mu. m accuracy with 95% confidence interval was confirmed on the vertical and the horizontal machining center through the large number of experiments.
-
본 논문에서는 퍼지제어 이론을 적용한 전지 유압 속도제어 시스템을 설계하였다, 최적의 퍼지 추론법을 유도하기 위해서 시뮬레이션 프로그램을 개발하여 최적의 샘플링 시간, A/D 및 D/A 변환기의 비트수를 결정하였고, 퍼지 입출력 변수의 형태, 퍼지 관계 행렬의 크기, 비퍼지화 방법 등을 시뮬레이션화하여 최적의 제어조건을 결정하였다, 전기유압 서어보 시스템에 적합한 퍼지 알고리즘은 Lsrsen 추론법, 비퍼지화 방법으로는 무게중심ㅂ버, 9*9 퍼지관계 행렬, 등간격의 삼각형 입출력 변수, 오차의 퍼지집합 및 오차 변화분의 퍼지집합이 각각 40과 5 일때 제어가 가장 잘 되었다. PID 제어방법과 비교할 때 퍼지제어가 우수한 성능을 보였으며,시스템의 등록성이 변할 때도 퍼지제어가 PID 제어 보다 적응이 잘 됨을 확인하였다.
-
This paper presents the method of calibrating and compensating for the kinematic errors in robot manipulators. A calibration model is developed to represent any geometric errors in the manipulator's structure. A calibration jig is used to find the values of these kinematic errors in the end-effector's position and a calibration algormined for a SSR-6 robot manipulator developed by Samsung Heavy Industry, Daeduk R & D Center. Through this experiment the maximun kinematic error is reduced from 10mm to 0.4mm
-
The aim of this paper is to present the development of visual seam tracking system equipped with visual range finder. The visual range finder, which consists of a CCD camera and a diode laser system with line generating optics, developed to recognize the types of weld joints and detect the location of weld joints. In practical applications, however, images of the weld joints are often degraded due to spatters, are flares, surface specularity, and welding smoke. To overcome the problem, this paper proposes a syntactic approach which is a class of artificial intelligence techniques. In the approach, the type of weld joint is inferred based upon the production rules which are linguiques grammars consisting of a set of line and junction primitives of laser strip image projected on weld joint. The production rules eliminate several noisy primitives to create new primitives through the merging process of primitives. After the recognition of weld joint, arc welding is started and the location of weld joints is repeatedly detected using a spring model-based template matching in which the template model is a by-product of the recognition process of weld joint. To show the effectiveness of the proposed approach a series of experiments-identification and robotic tracking-are conducted for four different types of weld joints.
-
최근 모든 산업에 있어서 자동화에 대한 요구가 높아지고 있다. 모든 자동화는 힘들고 어려운 작업을 기계가 인간을 대신하여 수행하며 품질 및 생산성을 향상시킨다는 관점에서 끊임없이 추구되고 있다. 용접 자동화도 그 예외는 아니어서 용접 구조물 제작의 경우, 임의의 용접 경로를 추적하는 방법과 공정 변수의 제어법 등이 현재 연구되고 있다. 특히 용접 공정중 용접선 경로 변화를 측정할 수 있는 센서가 용접 공정의 자동화에 필수적이다. 이러한 센서중에는 아크센서, 시각센서, 초음파센서, 레이저센서가 있으며, 이중 널리 이용되고 있는 것은 팁-모재간의 거리변화에 따른 전류 또는 전압 변화를 모델링하여 위치 정보로 이용하는 아크센서와, 카메라를 이용한 영상 정보를 처리함으로써 토치가 이동해야 항 위치를 찾는 시각센서가 있다.
-
본 연구에서는 산업 현장에서 일반적으로 가장 많이 사용되는 CAD 소프트웨어를 이용하여 모든 기계류에 공통적으로 쓰이는 기본적인 기계 요소들에 대한 자동 설계 시스템을 구축하려는데 목적을 둔다. 이는 단순히 제도 수준에만 머무르고 있는 현재의 CAD 시스템에 사용 조건에 맞는 기계요소에 대한 강도를 평가하여 적절한 기계 부품을 자동적으로 선정하고 도면으로 보여 주는 기능을 부여하여 생산성을 높이는데 그 의미가 있다. 또한 설계 과정의 자동화 가능성 여부에 대한 타당성을 검토하고자 한다. 연구방법으로는 C언어를 이용하여 각 기계 부품에 대한 설계(선정) 프로그램과 데이타 베이스 관리 프로그램을 작성하고, LISP언어를 이용하여 선정된 기계 부품을 자동적으로 그려 주는 방안을 제시한다. 개발에 사용된 CAD 소프트웨어는 PC에서 가장 많이 사용되는 AutoCAD를 사용한다.
-
This paper presents the design and implementation of an industrial controller for an autonomous guided vehicle(AGV) with economic sensor. A guidance scheme provides accurate tracking and achieves faster minimizing oftracking error. A sensor at the center provides the position and orientation of the vehicle relative to the track. Control laws that make use of this information have been devised to achieve accurate and fast tracking. The gains are modified on-line to achieve proper tracking. The simulation and implementation results are provided for the illustration of the implemented controller.
-
This paper proposes a new method of estimating the position and heading angle of a mobile robot moving on a flat surface. The proposed localization method utilizes two passive beacons and a single rotating ultrasonic sensor. The passive beacons consist of two cylinders with different diameters and reflect the ultrasonic pulses coming from the sonar sensor mounted on the mobile robot. The geometric parameter set of beacon is acquired from the sonar scan data obtained at a single mobile robot location using a new data processing algorithm. Form this parameter set, the position and heading angle of the mobile robot is determined directly. The performance and validity of the proposed method are evaluated using two beacons and a single sonar sensor attached at the pan-tilt device mounted on a mobile robot, named LCAR, in our laboratory.
-
This paper deals with analysis of articulated robot manipulator used for Arc welding and Material handling. Compared with present robot of which weight holding capacity is 6kg, this robot shows wider and symmetric working range for it's serial type mechanism. The link length is determined to have widest working range by using optimal simulation. To reduce body's weight, small AC servo motor is adopted and driving peak torque exerted at each joint is reduced by using dynamic analysis. So it is possible to reduce body's weight by 40% compared with the same class's robot and get wider working range. And by adopting modular design concept, each axis is designed to be changed easily for user's special need and repair.
-
A robot application system is developed for dual purpose of stud welding and are welding to weld plates in the manufacturing of elevator cabin. The production quantity is not so big to accommodate separate stations for stud welding and are welding respectively while the need for randomization of the processes is urgent. A robot with specification for spot welding is chosen, which is appropriate for stud welding. Some implementations are made so that the robot may also be shared for are welding process. Common jig and fixture is designed for the dual purpose. Important aspects in the procedure of system design, installation, and commissioning are stated, and signal set-ups and logic diagrams are illustrated.
-
본 연구에서는 로봇의 교시, 궤적계획, 충돌, 로봇동작, 제어알고리즘 등의 평가에 유용하게 사용할 수 있는 다기능 오프라인 프로그래밍 시스템인 POLPS(Pusan_national_university's Off-Line Programming System) 를 개발하였다. POLPS은 4축 스카라형 FARA 로봇을 대상으로 개발되었고, 편리한 방법으로 교시작업을 수행할 수 있으며, 교시 내용에 따라 궤적계획을 수행한 후 로봇을 동작시켜 충돌을 회피하는 동적 시뮬레이션을 수행할 수 있다. 제안된 여러 제어알고리즘 중에서 주어진 작업에 적합한 제어알고리즘을 효율적으로 선정하기 위한 성능의 비교와 평가 기능을 갖추고 있는 것이 주요한 특징이다. 또한 시각위치변경, 온선. 온면제거 및 음영처리, 고속 애니메이션, 환경구성, 인터프리터 명령어 등의 다양한 기능으로 편리하게 사용할 수 있다.
-
This paper introduces robust trajectory planner for obstacle and singularity avoidance in a nonresonant robot manipulator. In this work, we propose new trajectory generator in cartesian space by use of Bezier function. Also, SR-inverse is used for obstacle and singularity avoidance of nonredundant robot. This result is verified with 3-D simulator which has been developed to examine the effectiveness of the suggested method.
-
The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.
-
원심분리기는 용액 속에 있는 물질을 크기와 밀도 및 모양의 다름을 이용하여 용액으로부터 분리, 정제 및 순화하는 과학기계이며 처리량의 규모에 따라 공업용과 실험실용으로 분류된다. 공업용은 처리량이 많은 반면 실험실용은 처리량이 적으나 분리효과가 좋은 특징을 갖으며 회전속도에 의해 저속, 고속 및 초고속의 원심분리기로 나뉘어진다. 초고속 원심분리기는 최초(30년대)에 침전계수의 측정을 목적으로 연구개발을 시작하였다. 이의 용도에서 사용되는 초고속원심기를 분석용 초고속원심기라 부르나 이는 50년대 이후에 점차적으로 기술적 발전을 가져와 미소물질 분리를 위한 분리용 초고속원심기로 변천이 되어 생물학분야 이외에 항공기,선박,고속철도,석유탐지,원자력,섬유공업과 반도체등 여러 분야에 이용이 되고 있다.
-
현재 가공시스템은 생산성 향상을 위해 다방면에 걸쳐 자동화가 시도되고 있고, 한 걸음 더 나아가서 무인화가 추구되고 있다. 이런 상황에서 자동화와 무인화의 효과를 극대화하기 위해 가공공정의 고속화, 즉 주축시스템과 이송시스템의 고속화서 활발히 진행되고 있다. 고속가공의 특징으로는 비절삭 시간의 절약과 절삭시간의 단축을 들 수 있는데 , 구조적으로도 큰 영향을 미쳐서 작은 절삭력의 발생으로 인해 구조물이 고강성화에서 저강성화로 변화되고 있다. 본 연구에서는 고속주축 Housing의 열전달 경로를 관찰하고 열변 위의 양상을 파악해서 전. 후부 베어링의 열발생량 차이에서 오는 주축심의 각변위 억제대책을 제시하고, 주축 Housing의 조립용 기준 핀을 Housing의 Z축방향 열변위가 최소가 되도록 위치를 결정하였다.
-
우주는 무중력, 또한 초고진공의 세계이다. 우주에서 기계가 작동할 때, 운동 저항은 마찰력과 관성력만이 작용한다. 여기서 관성력은 가속, 감속 일 때만 작용하며 그 힘은 정확하게 계산하여 얻을 수 있다. 이것에 대하여 마찰력은 접촉면에 항상 존재하며, 또한 비정상이다. 본 연구에서는 피막재로서 앞서의 보고에서 이미 유효성이 나타난 바 있는 In을 사용하여 마찰 반복수에 따른 마찰관계변화에 미치는 Pin, disc의 표면 거칠기의 변화의 영향을 명확하게 밝히고, 초고진공중에 있어서 Tribo-Coating법에 의한 In막은 윤활기구를 검토하고자 한다.
-
비원형기어의 기본적인 특징을 몇 가지 소개하고자 한다. 첫째, 간소한 기구로서 소형화할 수 있고, 둘째, 임의의 부동속 회전 전달을 얻을 수 있으며, 셋째, 맞물린 치면의 미끄럼접촉이 적기 때문에 마모피로가 적고 넷째, 고부하 전달이 가능하다는 장점들이 있다. 본 연구의 목적은 링크, 캠과 같은 동일한 용도에서 사용되는 다른 여러 기구에 비해 많은 이점을 가지고 있는 적합한 타원계 비원형기어(엽형)에서 편평도의 변화에 따른 피치라인을설계하고, 각속비 및 편평도에 따른 형상과 길이의 변화, 물림압력각, 곡률반경등의 연구를 바탕으로 스퍼형과 헬리컬형의 타원계 엽형로타를 AOTOCAD의 script, 3dace를 이용하여 Computer Simulation를 통해 도형화한다.
-
스크류 압축기는 진동이 적고, 소형이면서 고효율을 유지하기가 용이하다는 특징을 가지고 있으며, 원통형 밀패용기 내에 암,수로터가 서로 반대 방향으로 맞물려 회전하면서, 로터홈과 케이싱 사이에 생기는 공간의 용적이 로터회전에 의해서 가스를 흡입, 압축, 배출하는 합축기 이다. 본 연구는 로터의 치형 함수의 기하학적성질 및 제한사항을 고려하여, 대칭 치형을 치수의 조합과, 원, 점, 직선, 타원을 사용하여 비대칭 치형을 설계하였다. 본 연구의 목적은 설계된 치형과 기존의 치형을 치형 형상의 변화에 따른 특성값 (실라인길이, 누설삼각형, 용적곡선, 흡입 및 토출 홈면적)의 변화에 대하여 연구함으로서 성능검토를 시도하였다.
-
Rating systems of bevel gears(straight, spiral, and zerol bevel gears) which are commonly used as power transmission devices for non-parallel axes are developed on the personal computer, which analyze and/or evaluate the gear design and the service performance at the point of view of strength and durability. The typical considerations of the ratings are the bending strength the surface durability, and the scoring resistance. The ratings are carried out using the reliable standards of AGMA & Gleason Works. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength, durability, and scoring partially in Gleason are appraised separatedly by each method, and a series of the estimation processes is integrated into the system so as to compare each result. The developed rating system can be used in the initial stage of gear design process, and also a better design can be performed by the evaluation of the initial design at the view point of gear strength and durability. Additionally, it is useful for the trouble-shooting of bevel gear systems and to the purpose of introducing the methods for maintaining design strength in service with appraising the gear strength after design or with appraising the influencing factors, as a whole. Therefore, this rating systems can help the aim of design automation of bevel gears.
-
The three dimensional finite element models for the basic deflection of linear motion guides and ball screws were developed. Form the comparison of the results calculated by the finite element method with those by the experiment, it was proved that the modeling method might be applied to real machine tool structures. Form the structural analysis of the headstock of the machine tool, it was found that the static stiffness was calculated within 6.5% error
-
Practical structures are subject not only to tension but also to shear and torsional loading. In this study, the mode 1 and 2 stress intensity factors of specimens were calculated by using elastic finite element mothod. The stress fields at the crack tip subjected to mixed-mode loading were also studied by usingf eleatic finite element method and were compared with theoretical results. The three-point-bending, four-point-bending, and mixed-mode-loading experiment were carried out. And, crack propagation rate da/dN and crack growth direction were examined. Also, the elastic finite element method was applied to calculate the stress intensity factors of branch crack tip and we relate the stress intenity factor range of branch crack tip(the result of FEM) to crack propagation rate(the experimental result). The .DELTA. -da/dN relation corelated with that of mode 1.
-
Carbon/epoxy composite(CFRP) coupons previously damaged by low velocity impact were tested under static tensile loading and microscope progress of damage was characterized by ultrasonic C-scan, Scanning Acoustic Microscopy (SAM) and Acoustic Emission(AE) techniques which were based on the application of elastic waves. The degress of impact damage has been correlated with the AE activity during monotonic or loading/unloading tensile testing as well as the result of ultrasonic test. The coupons were subjected to impact velocities ranged from 0.71 to 2.17 m/sec, which introduced the amount of damage rated as 0%, 10%, 30%, and 50% with reference to the total absorbed energy at fracture. Special attention was paid to determine optimal AE parameters to characterize the microscopic fracture process and to predict the residual strength of composite laminates. AE RMS voltage during the early stage of tensile loading was found an effective parameter to quantify the degree of impact damage. It was also found that the Felicity ratio is closely related to the stacking sequence and the residual strength of the CFRP laminates.
-
The failure phenomenon of Dual Basalt Fibers Reinforced Epoxy Composites(DFC) under tensile load was studied using acoustic emission(AE) technique. AE amplitude and AE energy were mainly associated with the internal microscopic failure mechanism of DFC specimen, such as fiber fracture, matrix cracking, and fiber/matrix debonding. Fiber failures in the DFC specimens were distinguishable by showing the highest AE energy amplitude. They were dependant on the fiber diameters. Matrix cracking was determined from the relatively lower AE amplitude and AE energy, whereas fiber/matrix debonding could not be successfully isolated. AE method, however, can be applicable to the fragmentation method for interfacial strength(IFSS) in DFC specimens with adjusting the threshold to isolate fiber breaks from matrix crack and debonding.
-
An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation ; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is nuque in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extram cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volum fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stress than fiber distrubution type for both in-plane and axisymmetric misorientation.
-
Fatigue life prediction under multi-axial variable load were performed for Aluminium 7075-T651 alloy using SAE Notched specimen & Torque tube shaft component specimen. When variable multiaxial load is applied to material, maximum damaged plane(critical plane) change. To clarify the situation, experiment is performed on two different changing load path. For multiaxial fatigue life prediction, miner rule is expanded to critical plane theory. Shear based parameter and Elliptical parameter give better correlation. This suggests that miner rule can be applicable on multi-axial variable load.
-
컴퓨터를 이용한 제품의 설계시 개념설계부터 최종설계에 이르는 동안 설계모델은 많은 수정을 요하게 된다. 이 과정에서 개념설계 단계부터 솔리드 모델을 채용하는 것은 불편하므로, 와이어프레임 모델이나 곡면 모델을 이용하여 설계를 진행하다가, 최종설계 단계에서 솔리드 모델로 전환하는 것이 바람직하다. 이 경우 이 3가지 모델을 모두 지원하는 모델러가 요구되는데 '복합다양체'를 지원하는 모델러가 이 요건을 만족시킨다. 또한 경계표현(B-rep)방식으로 모델링시 불리안 작업자를 많이 이용하는데, 모델링 도중에 불리한 작업으로 생성된 모델의 Undo작업은 용이하지 않은 일이다. 따라서 불리안 작업으로 생성된 모델의 수정작업을 위한 알고리즘이 요구된다, 일한 수정작업을 위해선 복합다양체를 지원하는 자료구조가 필요하다. 본 논문에선 이러한 복합다양체 자료구조를 갖는 형상모델러의 기본적 자료구조와 기본물체 모델링시 오일러 작업자를 구현하였다.
-
솔리드 모델의 새로운 분야인 복합다양체 모델을 지원하는 자료구조중 Radial-edge 자료구조 Vertex-Based 자료구조, 부분면 자료구조에 대하여, 각각의 위상요소들을 살펴보고 그들의 차이점을 비교 검토하였다. 그 결과 각 자료 구조들은 각각 독특한 장점을 갖고 있음을 알 수 있었다. 즉 Radial-edge 자료구조는 자료의 저장성 및 알고리즘의 복잡성 등에서 무난한 편이며, 부분면 자료구조는 자료 저장공간 측면에서 유리하고, Vertex-based 자료구조는 꼭지점에서의 복합다양체 상황 표현이 가장 명확히 됨을알수 있었다. 이와 같은 복합다양체를 지원하는 자료구조들의 특징과 차이점의 분석을 통하여 복합다양체 모델의 개발을 위한 기초를 마련하였다.
-
This paper deals with the generation of laser scan path for manufacturing 3-dimensional body using StereoLithography. The purpose of this study is to develop one module of the StersoLithography system(SLA) for Rapid Protyping and Manufacturing. AutoCAD system is used to supply CAD information from model. The X-Y controller which was made for a special purpose is used to test this system. The system software developed is composed of 3 main modules, the first module is calculating the boundary point os laser scan path. The scound module is generating final output file which is used to down load on the controller. The result of this study shows a good algorithm to generate laser scan path on the basis of simple mathematical background.