3차원 형상 복원(3D reconstruction)은 이미지 또는 영상 속 물체를 3차원 형상으로 복원하는 것을 말한다. 본 연구는 물체의 전반적 형상을 넘어 세부적인 모습까지 복원할 수 있는 표현력을 가진 3차원 형상 복원 네트워크인, 점진적 점유 네트워크를 제안한다. 본 연구가 제안하는 네트워크는 이미지 전체의 정보를 담고 있는 특징(feature)을 사용하는 기존 점유 네트워크와 달리, 수용 영역(receptive field)의 크기에 따라 다양한 수준의 이미지 특징을 추출해서 사용한다. 그리고, 다양한 수준의 이미지 특징을 디코더(decoder) 내 디코더 블록(decoder block)들에 순차적으로 반영하여, 형상 복원의 품질이 단계적으로 개선하는 네트워크 구조를 제안한다. 본 연구는 또한, 다양한 수준의 이미지 특징을 적절히 조합하여 사용하는 디코더 블록구조를 제안한다. 본 연구는 제안하는 네트워크의 성능 검증을 위해 ShapeNet 데이터 세트를 사용하였으며, 기존의 점유 네트워크(ONet) 및 다양한 수준의 이미지 특징을 사용하는 최신 연구(DISN)와 성능 비교하였다. 그 결과, 기존 점유 네트워크 대비 세 가지 검증 지표 모두에서 높은 성능을 달성하였으며, DISN과는 대등한 수준의 성능을 보여주었다. 그리고 복원 형상의 시각적 비교 결과, 본 연구의 점진적 점유 네트워크가 기존 점유 네트워크 대비, 물체의 세부 모습을 잘 복원하는 것을 확인하였다. 또한, DISN이 복원 실패한 물체의 얇은 부분 또는 이미지에서 가려진 부분을 본 연구의 네트워크는 잘 잡아내는 결과를 확인할 수 있었다. 이러한 결과는 본 연구가 제안하는 점진적 점유 네트워크의 유용성을 검증하는 결과다.