사이버 멀미는 VR 체험 중 발생하는 증상으로, 주로 감각과 인지 시스템 사이의 불일치로 인해 발생하는 것으로 추정된다. 하지만 감각 및 인지 시스템을 객관적으로 측정할 수 있는 방법이 없기 때문에, 사이버 멀미를 측정하는 것은 어렵다. 이를 해결하기 위해 사이버 멀미를 측정하기 위해 다양한 방법론들이 연구되고 있다. 기존의 멀미를 측정하기 위한 방법은 설문방식을 이용하거나, 머신 러닝을 이용하여 뇌파 데이터를 분석하는 방식으로 진행되어 왔다. 하지만 설문을 이용한 방식은 다소 객관성이 떨어지며, 머신 러닝을 사용하는 방식은 아직까지 높은 정확도를 얻은 연구가 부족하다. 본 논문에서는 뇌파 데이터를 Deep Neural Network (DNN) 딥러닝 알고리즘에 적용하여 객관적인 사이버 멀미 측정 방식을 제안한다. 또한 우리는 더 정확한 사이버 멀미 측정 결과를 위하여 딥러닝 네트워크 구조와 뇌파 데이터 전처리 기법을 제안한다. 우리의 접근 방법은 최대 98.88%의 정확도로 사이버 멀미를 측정한다. 또한 우리는 실험에서 사이버 멀미를 유발하는 영상의 특성을 분석한다. 일반적으로 사이버 멀미는 상하 움직임이 심한 화면, 화면의 지속적이고 빠른 전환, 공중에 떠있는 상황에서 발생한다.