물리 시뮬레이션 기반의 캐릭터 동작 제어 문제를 강화학습을 이용하여 해결해나가는 연구들이 계속해서 진행되고 있다. 강화학습을 사용하여 문제를 풀기 위해서는 네트워크 구조, 하이퍼파라미터 튜닝, 상태(state), 행동(action), 보상(reward)이 문제에 맞게 적절히 설정이 되어야 한다. 많은 연구들에서 다양한 조합으로 상태, 행동, 보상을 정의하였고, 성공적으로 문제에 적용하였다. 상태, 행동, 보상을 정의함에 다양한 조합이 있다보니 학습 성능을 향상시키는 최적의 조합을 찾기 위해서 각각의 요소들이 미치는 영향을 분석하는 연구도 진행되고 있다. 우리는 지금까지 이뤄지지 않았던 상태 표현 방식에 따른 강화학습성능에 미치는 영향을 분석하였다. 첫째로, root attached frame, root aligned frame, projected aligned frame 3가지로 좌표계를 정의하였고, 이에 대해 표현된 상태를 이용하여 강화학습에 미치는 영향을 분석하였다. 둘째로, 상태를 정의 할 때, 관절의 위치, 각도로 다양하게 조합하는 경우에 학습성능에 어떠한 영향을 미치는지 분석하였다.