DOI QR코드

DOI QR Code

An Accelerated IK Solver for Deformation of 3D Models with Triangular Meshes

삼각형 메쉬로 이루어진 3D 모델의 변형을 위한 IK 계산 가속화

  • Park, Hyunah (Department of Computer Science, Hanyang University Graduate School) ;
  • Kang, Daeun (Department of Computer Science, Hanyang University Graduate School) ;
  • Kwon, Taesoo (Department of Computer Science, Hanyang University Graduate School)
  • 박현아 (한양대학교 일반대학원 컴퓨터소프트웨어학과) ;
  • 강다은 (한양대학교 일반대학원 컴퓨터소프트웨어학과) ;
  • 권태수 (한양대학교 일반대학원 컴퓨터소프트웨어학과)
  • Received : 2021.08.11
  • Accepted : 2021.10.01
  • Published : 2021.12.01

Abstract

The purpose of our research is to efficiently deform a 3D models which is composed of a triangular mesh and a skeleton. We designed a novel inverse kinematics (IK) solver that calculates the updated positions of mesh vertices with fewer computing operations. Through our user interface, one or more markers are selected on the surface of the model and their target positions are set, then the system updates the positions of surface vertices to construct a deformed model. The IK solving process for updating vertex positions includes many computations for obtaining transformations of the markers, their affecting joints, and their parent joints. Many of these computations are often redundant. We precompute those redundant terms in advance so that the 3-nested loop computation structure was improved to a 2-nested loop structure, and thus the computation time for a deformation is greatly reduced. This novel IK solver can be adopted for efficient performance in various research fields, such as handling 3D models implemented by LBS method, or object tracking without any markers.

본 연구는 골격이 있고 삼각형 메쉬로 이루어진 3D 모델의 변형을 빠른 연산 속도로 구현하는 것을 목표로 한다. 이를 위해 삼각형 메쉬 정점의 위치를 빠른 속도로 계산할 수 있는 IK 풀이 방법을 연구하고 해당 인터페이스를 개발하였다. 모델 표면상에 한 개 이상의 마커를 지정하고 마커의 목표 위치를 설정하면, 이 시스템은 마커의 목표 위치를 기준으로 가속화된 IK 풀이를 통해 모델 표면을 구성하는 삼각형 메쉬 정점의 위치를 계산한다. 메쉬의 위치를 결정하는 데에는 각 마커와 해당 마커에 영향을 미치는 관절, 그리고 해당 관절의 상위(부모) 관절에 대하여 계산을 수행하는데, 이 과정에서 빈번하게 사용되는 중복된 항(terms)이 발생한다. 이러한 중복항을 사전에 계산해 둠으로써 기존의 삼중 중첩 반복 구조의 계산 절차를 이중 중첩 반복 구조로 개선하여 모델 변형 결과를 신속하게 구현할 수 있다. 제안된 가속화된 IK 풀이 방법은 LBS 기법으로 구현된 3D 모델을 다루거나 마커 없이 단순 촬영만으로 대상 물체를 추적하는 무마커 추적 관련 연구 등 다양한 분야에서 유용하게 활용할 수 있다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2019R1A4A1029800, NRF-2020R1A2C1012847).

References

  1. A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir, "Inverse kinematics techniques in computer graphics: A survey," Computer Graphics Forum, pp. 35-58, 2018.
  2. S. R. Buss, "Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods," IEEE Journal of Robotics and Automation, Tech. Rep., 2004.
  3. J. Lee and S. Y. Shin, "A hierarchical approach to interactive motion editing for human-like figures," in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH '99, 1999, p. 39-48.
  4. X. Wu, M. Tournier, and L. Reveret, "Natural Character Posing from a Large Motion Database," IEEE Computer Graphics and Applications, pp. 69-77, 2011.
  5. D. Holden, J. Saito, and T. Komura, "A deep learning framework for character motion synthesis and editing," ACM Trans. Graph., 2016.
  6. J. Kim, Y. Seol, H. Kim, and T. Kwon, "Interactive character posing with efficient collision handling," Computer Animation and Virtual Worlds, vol. 31, no. 3, p. e1923, 2020. https://doi.org/10.1002/cav.1923
  7. A. Jacobson, Z. Deng, L. Kavan, and J. Lewis, "Skinning: Real-time shape deformation," in ACM SIGGRAPH 2014 Courses, 2014.
  8. R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popovic,' "Mesh-based inverse kinematics," in ACM SIGGRAPH 2005 Papers, ser. SIGGRAPH '05. Association for Computing Machinery, 2005, p. 488-495.
  9. A. Jacobson, I. Baran, L. Kavan, J. Popovic, and O. Sorkine, ' "Fast automatic skinning transformations," ACM Trans. Graph., vol. 31, no. 4, 2012.
  10. K. Wampler, "Fast and reliable example-based mesh ik for stylized deformations," ACM Trans. Graph., vol. 35, no. 6, 2016.
  11. L. Mundermann, S. Corazza, and T. Andriacchi, "The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications," Journal of NeuroEngineering and Rehabilitation, 2006.
  12. Z. Zhang, "Microsoft kinect sensor and its effect," IEEE multimedia, vol. 19, no. 2, pp. 4-10, 2012. https://doi.org/10.1109/MMUL.2012.24
  13. L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik, "Intel realsense stereoscopic depth cameras," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 1-10.
  14. L. Becker and P. Russ, "Evaluation of joint angle accuracy using markerless silhouette based tracking and hybrid tracking against traditional marker tracking," Poster fur Masterarbeit bei Simi Reality Motion Systems GmbH und der Otto-von-Guericke-Universitat Magdeburg, 2015.
  15. Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, "Openpose: Realtime multi-person 2d pose estimation using part affinity fields," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 172-186, 2021. https://doi.org/10.1109/TPAMI.2019.2929257
  16. J. Taylor, L. Bordeaux, T. Cashman, B. Corish, C. Keskin, T. Sharp, E. Soto, D. Sweeney, J. Valentin, B. Luff, A. Topalian, E. Wood, S. Khamis, P. Kohli, S. Izadi, R. Banks, A. Fitzgibbon, and J. Shotton, "Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences," ACM Trans. Graph., vol. 35, no. 4, 2016.
  17. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The finite element method: its basis and fundamentals. Elsevier, 2005.
  18. J. Kim and N. S. Pollard, "Fast simulation of skeleton-driven deformable body characters," ACM Trans. Graph., vol. 30, no. 5, 2011.