딥러닝 기반의 이미지 세그멘테이션은 차선 인식을 위해 널리 사용되는 접근 방식 중 하나로, 차선의 키포인트를 추출하기 위한 후처리 과정이 필요하다. 일반적으로 키포인트는 사용자가 지정한 임계값을 기준으로 추출한다. 하지만 최적의 임계값을 찾는 과정은 큰 노력을 요구하며, 데이터 세트(또는 이미지)마다 최적의 값이 다를 수 있다. 본 연구는 사용자의 직접 임계값 지정 대신, 대상의 이미지에 맞추어 적절한 임계값을 자동으로 설정하는 키포인트 추출 알고리즘을 제안한다. 본 논문의 키포인트 추출 알고리즘은 차선 영역과 배경의 명확한 구분을 위해 줄 단위 정규화를 사용한다. 그리고 커널 밀도 추정을 사용하여, 각 줄에서 각 차선의 키포인트를 추출한다. 제안하는 알고리즘은 TuSimple과 CULane 데이터 세트에 적용되었으며, 고정된 임계값 사용 대비 정확도 및 거리오차 측면에서 1.80%p와 17.27% 향상된 결과를 얻는 것을 확인하였다.