비소세포폐암(NSCLC)은 전체 폐암 중 85%의 높은 비중을 차지하며 사망률(22.7%)이 다른 암에 비해 현저히 높은 암으로 비소세포폐암 환자의 수술 후 예후에 대한 예측은 매우 중요하다. 본 연구에서는 종양을 관심영역으로 갖는 비소세포폐암 환자의 수술 전 흉부 CT 영상 패치의 종류를 종양 관련 정보에 따라 총 다섯 가지로 다양화하고, 이를 입력데이터로 갖는 사전 학습 된 ResNet 과 EfficientNet CNN 네트워크를 사용하여 단일 모델과 간접 투표 방식을 이용한 앙상블 모델, 그리고 3 개의 입력 채널을 활용한 앙상블 모델에서의 실험 결과 및 성능을 오분류의 사례와 Grad-CAM 시각화를 통해 비교 분석한다. 실험 결과, 종양 주변부 패치를 학습한 ResNet152 단일 모델과 EfficientNet-b7 단일 모델은 각각 87.93%와 81.03%의 정확도를 보였다. 또한 ResNet152 에서 총 3 개의 입력 채널에 각각 영상 패치, 종양 주변부 패치, 형상 집중 종양 내부 패치를 넣어 앙상블 모델을 구성한 경우에는 정확도 87.93%를, EfficientNet-b7 에서 간접 투표 방식으로 영상 패치와 종양 주변부 패치 학습 모델을 앙상블 한 경우에는 정확도 84.48%를 도출하며 안정적인 성능을 보였다.