Acknowledgement
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원과(No. 2020R1A2C1102140) 과학기술정보통신부 및 정보통신기획평가원의 SW 중심대학지원사업의 연구결과로 수행되었음(2016-0-00022).
References
- Korea Central Cancer Registry, National Cancer Center, "Annual report of cancer statistics in Korea in 2018." Ministry of Health and welfare, 2020.
- C. Haarburger, P. Weitz, O. Rippel and D. Merhof, "Image-Based Survival Prediction for Lung Cancer Patients Using CNNS." 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1197-1201, 2019.
- Ye-Sel Lee, A-Hyun Cho and Helen Hong, "Ensemble Learning Based on Tumor Internal and External Imaging Patch to Predict the Recurrence of Non-small Cell Lung Cancer Patients in Chest CT Image." Journal of Korea Multimedia Society, 24(3), 373-381, 2021. https://doi.org/10.9717/KMMS.2020.24.3.373
- Thanh-Hung Vo, Guee-Sang Lee, Hyung-Jeong Yang and In-Jae Oh. "Survival Prediction of Lung Cancer Using Small-Size Clinical Data with a Multiple Task Variational Autoencoder." Electronics 10, no. 12: 1396, 2021. https://doi.org/10.3390/electronics10121396
- Tai H Dou, Thibaud P Coroller, Joost J M van Griethuysen, Raymond H Mak and Hugo J W L Aerts, "Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC." PloS one vol. 13,11 e0206108, 2018. https://doi.org/10.1371/journal.pone.0206108
- Hansang Lee, Haeil Lee, Helen Hong, Heejin Bae, Joon Seok Lim and Junmo Kim, "Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation." Medical physics, 10.1002/mp.15118, 2021.
- Tetsuro Baba, Hidetaka Uramoto, Masaru Takenaka, Souichi Oka, Yoshiki Shigematsu, Hidehiko Shimokawa, Takeshi Hanagiri and Fumihiro Tanaka, "The tumour shape of lung adenocarcinoma is related to the postoperative prognosis." Interactive cardiovascular and thoracic surgery vol. 15, 1: 73-6, 2021. https://doi.org/10.1093/icvts/ivs055
- K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition." IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.
- M. Tan and Q. V. Le, "EfficientNet: Rethinking model scaling for convolutional neural networks." 36th Int. Conf. Mach. Learn. ICML, vol. 2019-June, pp. 10691-10700, 2019.
- Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh and Dhruv Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization." Proceedings of the IEEE international conference on computer vision, pp. 618-626, 2016.
- Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva and Antonio Torralba "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921-2929, 2016.
- Erico Tjoa and Cuntai Guan "A survey on explainable artificial intelligence (XAI): towards medical XAI." pp. 1-21, 2020
- Hualong Yu, Shihe Liu, Chuanyu Zhang, Shaoke Li, Jianan Ren, Jingli Zhang and Wenjian Xu, "Computed tomography and pathology evaluation of lung ground-glass opacity." Experimental and Therapeutic Medicine vol. 16, 5305-5309, 2018.