캐릭터의 자세가 변할 때 마다 캐릭터의 무게 중심(COM) 위치도 변하게 된다. 이 때 무게 중심의 위치 변화는 걷기, 뛰기, 쭈그려 앉기 등 다양한 동작 각각에 대응되는 독자적인 패턴을 가지므로 이를 이용하면 원래 동작의 정보를 알아낼 수 있다. 본 논문에서는 캐릭터의 무게 중심의 위치 변화를 토대로 동작을 예측하는 모션 생성 기법을 제안한다. 이 방법을 이용하면 무게 중심 정보를 통해 원래 동작의 유형에 대한 별도의 라벨 없이도 다양한 동작을 생성할 수 있다. 그러므로 네트워크의 학습 및 실행을 위한 데이터셋을 만들 때 사람의 손을 거칠 필요 없이 전처리를 비롯한 모든 과정을 자동으로 진행할 수 있다. 본 논문에서 제안하는 신경망 모델은 캐릭터의 모션 이력(history) 정보와 무게 중심 정보들을 입력 받아 현재 프레임에서의 포즈 정보를 출력하며, 연속적인 시계열 모션 데이터를 다루기 위해 1차원 Convolution을 수행하는 간단한 형태의 Convolutional Neural Network(CNN)를 사용하여 학습되었다.