DOI QR코드

DOI QR Code

Motion generation using Center of Mass

무게중심을 활용한 모션 생성 기술

  • Received : 2020.02.26
  • Accepted : 2020.03.20
  • Published : 2020.06.01

Abstract

When a character's pose changes, its center of mass(COM) also changes. The change of COM has distinctive patterns corresponding to various motion types like walking, running or sitting. Thus the motion type can be predicted by using COM movement. We propose a motion generator that uses character's center of mass information. This generator can generate various motions without annotated action type labels. Thus dataset for training and running can be generated full-automatically. Our neural network model takes the motion history of the character and its center of mass information as inputs and generates a full-body pose for the current frame, and is trained using simple Convolutional Neural Network(CNN) that performs 1D convolution to deal with time-series motion data.

캐릭터의 자세가 변할 때 마다 캐릭터의 무게 중심(COM) 위치도 변하게 된다. 이 때 무게 중심의 위치 변화는 걷기, 뛰기, 쭈그려 앉기 등 다양한 동작 각각에 대응되는 독자적인 패턴을 가지므로 이를 이용하면 원래 동작의 정보를 알아낼 수 있다. 본 논문에서는 캐릭터의 무게 중심의 위치 변화를 토대로 동작을 예측하는 모션 생성 기법을 제안한다. 이 방법을 이용하면 무게 중심 정보를 통해 원래 동작의 유형에 대한 별도의 라벨 없이도 다양한 동작을 생성할 수 있다. 그러므로 네트워크의 학습 및 실행을 위한 데이터셋을 만들 때 사람의 손을 거칠 필요 없이 전처리를 비롯한 모든 과정을 자동으로 진행할 수 있다. 본 논문에서 제안하는 신경망 모델은 캐릭터의 모션 이력(history) 정보와 무게 중심 정보들을 입력 받아 현재 프레임에서의 포즈 정보를 출력하며, 연속적인 시계열 모션 데이터를 다루기 위해 1차원 Convolution을 수행하는 간단한 형태의 Convolutional Neural Network(CNN)를 사용하여 학습되었다.

Keywords

References

  1. D. Holden, J. Saito, T. Komura, and T. Joyce, "Learning motion manifolds with convolutional autoencoders," in SIGGRAPH Asia 2015 Technical Briefs, 2015, pp. 1-4.
  2. I. Mordatch, K. Lowrey, G. Andrew, Z. Popovic, and E. V. Todorov, "Interactive control of diverse complex characters with neural networks," in Advances in Neural Information Processing Systems, 2015, pp. 3132-3140.
  3. D. Holden, T. Komura, and J. Saito, "Phase-functioned neural networks for character control," ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1-13, 2017.
  4. H. Zhang, S. Starke, T. Komura, and J. Saito, "Mode-adaptive neural networks for quadruped motion control," ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-11, 2018.
  5. J. Lee, J. Chai, P. S. Reitsma, J. K. Hodgins, and N. S. Pollard, "Interactive control of avatars animated with human motion data," in Proceedings of the 29th annual conference on Computer graphics and interactive techniques, 2002, pp. 491-500.
  6. L. Kovar, M. Gleicher, and F. Pighin, "Motion graphs," in Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH'02. New York, NY, USA: Association for Computing Machinery, 2002, p. 473-482. [Online]. Available: https://doi.org/10.1145/566570.566605
  7. O. Arikan and D. A. Forsyth, "Interactive motion generation from examples," ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 483-490, 2002. https://doi.org/10.1145/566654.566606
  8. M. Lau and J. J. Kuffner, "Behavior planning for character animation," in Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2005, pp. 271-280.
  9. K. Hyun, K. Lee, and J. Lee, "Motion grammars for character animation," in Computer Graphics Forum, vol. 35, no. 2. Wiley Online Library, 2016, pp. 103-113. https://doi.org/10.1111/cgf.12815
  10. E. Hsu, K. Pulli, and J. Popovic, "Style translation for human motion," in ACM SIGGRAPH 2005 Papers, 2005, pp. 1082-1089.
  11. Y. Lee, K. Wampler, G. Bernstein, J. Popovic, and Z. Popovic, "Motion fields for interactive character locomotion," in ACM SIGGRAPH Asia 2010 papers, 2010, pp. 1-8.
  12. J. M. Wang, D. J. Fleet, and A. Hertzmann, "Gaussian process dynamical models for human motion," IEEE transactions on pattern analysis and machine intelligence, vol. 30, no. 2, pp. 283-298, 2007. https://doi.org/10.1109/TPAMI.2007.1167
  13. G. W. Taylor and G. E. Hinton, "Factored conditional restricted boltzmann machines for modeling motion style," in Proceedings of the 26th Annual International Conference on Machine Learning, ser. ICML'09. New York, NY, USA: Association for Computing Machinery, 2009, p. 1025-1032. [Online]. Available: https://doi.org/10.1145/1553374.1553505
  14. G. W. Taylor, G. E. Hinton, and S. T. Roweis, "Two distributed-state models for generating high-dimensional time series," Journal of Machine Learning Research, vol. 12, no. Mar, pp. 1025-1068, 2011.
  15. K. Lee, S. Lee, and J. Lee, "Interactive character animation by learning multi-objective control," ACM Transactions on Graphics (TOG), vol. 37, no. 6, pp. 1-10, 2018.
  16. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105.
  17. O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, "Convolutional neural networks for speech recognition," IEEE/ACM Transactions on audio, speech, and language processing, vol. 22, no. 10, pp. 1533-1545, 2014. https://doi.org/10.1109/TASLP.2014.2339736
  18. V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp. 807-814.
  19. J. Chai and J. K. Hodgins, "Performance animation from low-dimensional control signals," in ACM SIGGRAPH 2005 Papers, 2005, pp. 686-696.
  20. J. Min and J. Chai, "Motion graphs++ a compact generative model for semantic motion analysis and synthesis," ACM Transactions on Graphics (TOG), vol. 31, no. 6, pp. 1-12, 2012. https://doi.org/10.1145/2185520.2185612
  21. A. Safonova and J. K. Hodgins, "Construction and optimal search of interpolated motion graphs," in ACM SIGGRAPH 2007 papers, 2007, pp. 106-es.
  22. K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic, "Style-based inverse kinematics," in ACM SIGGRAPH 2004 Papers, 2004, pp. 522-531.