References
- J. J. LaViola Jr. A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin, 32(1):47-56, 2000. https://doi.org/10.1145/333329.333344
- K. Nesbitt, S. Davis, K. Blackmore, and E. Nalivaiko. Correlating reaction time and nausea measures with traditional measures of cybersickness. Displays, 48:1-8, 2017. https://doi.org/10.1016/j.displa.2017.01.002
- B. Keshavarz and H. Hecht. Pleasant music as a countermeasure against visually induced motion sickness. Applied ergonomics, 45(3):521-527, 2014. https://doi.org/10.1016/j.apergo.2013.07.009
- Y.-H. Yu, P.-C. Lai, L.-W. Ko, C.-H. Chuang, B.-C. Kuo, and C.-T. Lin. An eeg-based classification system of passenger's motion sickness level by using feature extraction/selection technologies. In Neural Networks (IJCNN), The 2010 International Joint Conference on, pp. 1-6. IEEE, 2010.
- C.-S. Wei, L.-W. Ko, S.-W. Chuang, T.-P. Jung, and C.-T. Lin. Eegbased evaluation system for motion sickness estimation. In Neural Engineering (NER), 2011 5th International IEEE/EMBS Conference on, pp. 100-103. IEEE, 2011.
- C.-T. Lin, S.-F. Tsai, L.-W. Ko, et al. Eeg-based learning system for online motion sickness level estimation in a dynamic vehicle environment. IEEE transactions on neural networks and learning systems, 24(10):1689-1700, 2013. https://doi.org/10.1109/TNNLS.2013.2275003
- K. G. Hartmann, R. T. Schirrmeister, and T. Ball. Hierarchical internal representation of spectral features in deep convolutional networks trained for eeg decoding. In Brain-Computer Interface (BCI), 2018 6th International Conference on, pp. 1-6. IEEE, 2018.
- R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter, and T. Ball. Deep learning with convolutional neural networks for decoding and visualization of eeg pathology. In Signal Processing in Medicine and Biology Symposium (SPMB), 2017 IEEE, pp. 1-7. IEEE, 2017.
- O. Dressler, G. Schneider, G. Stockmanns, and E. Kochs. Awareness and the eeg power spectrum: analysis of frequencies. British journal of anaesthesia, 93(6):806-809, 2004. https://doi.org/10.1093/bja/aeh270
- B. Hjorth. Eeg analysis based on time domain properties. Electroencephalography and clinical neurophysiology, 29(3):306-310, 1970. https://doi.org/10.1016/0013-4694(70)90143-4
- T.-P. Jung, S. Makeig, M. Stensmo, and T. J. Sejnowski. Estimating alertness from the eeg power spectrum. IEEE transactions on biomedical engineering, 44(1):60-69, 1997. https://doi.org/10.1109/10.553713
- S. Liang, C. Lin, R. Wu, Y. Chen, T. Huang, and T. Jung. Monitoring driver's alertness based on the driving performance estimation and the eeg power spectrum analysis. In Conf Proc IEEE Eng Med Biol Soc, vol. 6, pp. 5738-5741, 2005.
- A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural computation, 7(6):1129-1159, 1995. https://doi.org/10.1162/neco.1995.7.6.1129
- P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):287-314, 1994. https://doi.org/10.1016/0165-1684(94)90029-9
- C. Jutten and J. Herault. Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture. Signal processing, 24(1):1-10, 1991. https://doi.org/10.1016/0165-1684(91)90079-X
- B.-C. Kuo and K.-Y. Chang. Feature extractions for small sample size classification problem. IEEE Transactions on Geoscience and Remote Sensing, 45(3):756-764, 2007. https://doi.org/10.1109/TGRS.2006.885074
- T.-W. Lee, M. Girolami, and T. J. Sejnowski. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation, 11(2):417-441, 1999. https://doi.org/10.1162/089976699300016719
- S. Makeig, T.-P. Jung, A. J. Bell, D. Ghahremani, and T. J. Sejnowski. Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences, 94(20):10979-10984, 1997. https://doi.org/10.1073/pnas.94.20.10979
- J. A. Uriguen and B. Garcia-Zapirain. Eeg artifact removal-state-ofthe- art and guidelines. Journal of neural engineering, 12(3):031001, 2015. https://doi.org/10.1088/1741-2560/12/3/031001
- M. Othman, A. Wahab, I. Karim, M. A. Dzulkifli, and I. F. T. Alshaikli. Eeg emotion recognition based on the dimensional models of emotions. Procedia-Social and Behavioral Sciences, 97:30-37, 2013. https://doi.org/10.1016/j.sbspro.2013.10.201
- E. Durall, T. Leinonen, B. Gros, and T. Rodriguez-Kaarto. Reflection in learning through a self-monitoring device: Design research on eeg self-monitoring during a study session. Designs for Learning, 9(1), 2017.
- D. O. Bos et al. Eeg-based emotion recognition. The Influence of Visual and Auditory Stimuli, 56(3):1-17, 2006.
- P. C. Petrantonakis and L. J. Hadjileontiadis. Emotion recognition from eeg using higher order crossings. IEEE Transactions on Information Technology in Biomedicine, 14(2):186-197, 2010. https://doi.org/10.1109/TITB.2009.2034649
- Y.-P. Lin, C.-H. Wang, T.-P. Jung, T.-L. Wu, S.-K. Jeng, J.-R. Duann, and J.-H. Chen. Eeg-based emotion recognition in music listening. IEEE Transactions on Biomedical Engineering, 57(7):1798-1806, 2010. https://doi.org/10.1109/TBME.2010.2048568
- Y. Liu, O. Sourina, and M. K. Nguyen. Real-time eeg-based human emotion recognition and visualization. In 2010 international conference on cyberworlds, pp. 262-269. IEEE, 2010.
- D. Nie, X. Wang, L. Shi, and B. Lu. Eeg-based emotion recognition during watching movies. In 2011 5th International IEEE/EMBS Conference on Neural Engineering, pp. 667-670, April 2011. doi: 10. 1109/NER.2011.5910636 https://doi.org/10.1109/NER.2011.5910636
- W. Zheng, B. Dong, and B. Lu. Multimodal emotion recognition using eeg and eye tracking data. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5040-5043, Aug 2014. doi: 10.1109/EMBC.2014.6944757
- EMOTIV. Developers - emotiv. Updated May 28, 2018, https://www.emotiv.com/developer/, 2018.
- Supercell. Clash of clans: Hog rider 360. Updated November 19, 2016, https://www.youtube.com/watch?v=yVLfEHXQk08, 2016.
- FOX International. The walking dead - vr 360 video. Updated October 20, 2016, https://www.youtube.com/watch?v=nRQsnqd2Vs, 2016.
- Google Spotlight Stories. 360 google spotlight stories: Pearl. Updated May 20, 2016, https://www.youtube.com/watch?v=WqCH4DNQBUA, 2016.
- ApexTV. 2017. 360 Jeff The Killer VR Horror Experience. Updated October 28, 2017, https://www.youtube.com/watch?v=icV-OzwKS-k.
- D. E. Rumelhart, J. L. McClelland, P. R. Group, et al. Parallel distributed processing, vol. 1. MIT press Cambridge, MA, 1987.
- M. Minsky and S. A. Papert. Perceptrons: An introduction to computational geometry. MIT press, 2017.
Cited by
- 가상현실 기반 3차원 공간에 대한 감정분류 딥러닝 모델 vol.36, pp.4, 2019, https://doi.org/10.5659/jaik_pd.2020.36.4.41