DOI QR코드

DOI QR Code

A Study on Movement Interface in Mobile Virtual Reality

모바일 가상현실에서의 이동 인터페이스에 관한 연구

  • Hong, Seunghyun (Division of Computer Engineering, Hansung University) ;
  • Na, Giri (Division of Computer Engineering, Hansung University) ;
  • Cho, Yunsik (Department of Computer Engineering, Graduate School, Hansung University) ;
  • Kim, Jinmo (Division of Computer Engineering, Hansung University)
  • 홍승현 (한성대학교 컴퓨터공학부) ;
  • 나기리 (한성대학교 컴퓨터공학부) ;
  • 조윤식 (한성대학교 일반대학원 컴퓨터공학과) ;
  • 김진모 (한성대학교 컴퓨터공학부)
  • Received : 2021.06.09
  • Accepted : 2021.06.25
  • Published : 2021.07.23

Abstract

This study proposes an interface for providing mobile interaction suitable for mobile virtual reality (VR) and analyzes it through comparative experiments. The proposed interface is premised on not using additional equipment except for the mobile head-mounted display(HMD) in consideration of accessibility and usability. And the interface that controls the movement interaction using the user's gaze is designed in two phases. The key is to minimize the occurrence of negative factors such as VR sickness that can be caused by straight line movement in virtual reality. To this end, two phases are designed: an interface composed of forward/backward buttons to move the gaze toward the ground, and an interface composed of left and right buttons on the front in consideration of the gaze change in real walking motion. An application that can compare and analyze movement interactions through the proposed interface is produced, and a survey experiment is conducted to analyze the user's satisfaction with the interface experience and the negative impact on the movement process. It was confirmed that the proposed movement interaction reduced negative effects such as VR sickness along with a satisfactory interface experience for users.

본 연구는 모바일 가상현실에 적합한 이동 상호작용을 제공하기 위한 인터페이스를 제안하고 비교 실험을 통해 분석한다. 제안하는 인터페이스는 접근성과 활용성을 고려하여 모바일 HMD를 제외한 추가적인 장비를 사용하지 않는 것을 전제로 한다. 그리고 사용자의 시선을 활용하여 이동 상호작용을 제어하는 인터페이스를 두 단계로 나누어 설계한다. 핵심은 가상현실에서의 직선 이동이 유발시킬 수 있는 멀미 등의 부정적 요인의 발생을 최소화하는 것이다. 이를 위해 시선을 지면으로 향하여 이동하도록 전/후진 버튼으로 구성된 인터페이스, 실제 걷기 동작에서의 시선 변화를 고려하여 정면 상단에 좌, 우버튼으로 구성된 인터페이스의 두 단계를 설계한다. 제안한 인터페이스를 통한 이동 상호작용을 비교 분석할 수 있는 어플리케이션을 제작하고, 사용자를 대상으로 만족하는 인터페이스 경험과 이동 과정에서의 부정적 영향을 확인하기 위한 설문실험을 진행한다. 이를 통해 제안한 이동 상호작용이 사용자에게 만족하는 인터페이스 경험과 함께 멀미와 같은 부정적 영향을 감소시키는 것으로 확인되었다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2020R1F1A1063442)

References

  1. J. Lee, M. Kim, C. Jeon, and J. Kim, "A study on gamepad/gaze based input processing for mobile platform virtual reality contents," Journal of the Korea Computer Graphics Society, vol. 22, no. 3, pp. 31-41, 2016. https://doi.org/10.15701/kcgs.2016.22.3.31
  2. A. Lele, "Virtual reality and its military utility," Journal of Ambient Intelligence and Humanized Computing, vol. 4, pp. 17-26, 2013. https://doi.org/10.1007/s12652-011-0052-4
  3. W. Alhalabi, "Virtual reality systems enhance students' achievements in engineering education," Behaviour & Information Technology, vol. 35, no. 11, pp. 919-925, 2016. [Online]. Available: https://doi.org/10.1080/0144929X.2016.1212931
  4. S. Doolani, C. Wessels, V. Kanal, C. Sevastopoulos, A. Jaiswal, H. Nambiappan, and F. Makedon, "A review of extended reality (xr) technologies for manufacturing training," Technologies, vol. 8, no. 4, 2020. [Online]. Available: https://www.mdpi.com/2227-7080/8/4/77
  5. N. Sidorakis, G. A. Koulieris, and K. Mania, "Binocular eye-tracking for the control of a 3d immersive multimedia user interface," in 2015 IEEE 1st Workshop on Everyday Virtual Reality (WEVR), March 2015, pp. 15-18.
  6. J. Lee, K. Jeong, and J. Kim, "Mave: Maze-based immersive virtual environment for new presence and experience," Computer Animation and Virtual Worlds, vol. 28, no. 3-4, p. e1756, 2017. https://doi.org/10.1002/cav.1756
  7. H. Joo, T. Simon, and Y. Sheikh, "Total capture: A 3d deformation model for tracking faces, hands, and bodies," in Proceedings of The 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), ser. CVPR '18, vol. abs/1801.01615. Washington, DC, USA: IEEE Computer Society, 18-22 June 2018, pp. 8320-8329. [Online]. Available: http://arxiv.org/abs/1801.01615
  8. I. Choi, E. Ofek, H. Benko, M. Sinclair, and C. Holz, "Claw: A multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality," in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, ser. CHI '18. New York, NY, USA: ACM, 21-26 April 2018, pp. 654:1-654:13. [Online]. Available: http://doi.acm.org/10.1145/3173574.3174228
  9. M. Kim, J. Kim, K. Jeong, and C. Kim, "Grasping vr: Presence of pseudo-haptic interface based portable hand grip system in immersive virtual reality," International Journal of Human-Computer Interaction, vol. 36, no. 7, pp. 685-698, 2020. [Online]. Available: https://doi.org/10.1080/10447318.2019.1680920
  10. J. Lee, M. Kim, and J. Kim, "Rolevr: Multi-experience in immersive virtual reality between co-located HMD and non-hmd users," Multim. Tools Appl., vol. 79, no. 1-2, pp. 979-1005, 2020. [Online]. Available: https://doi.org/10.1007/s11042-019-08220-w
  11. Y. Cho, J. Kang, J. Jeon, J. Park, M. Kim, and J. Kim, "X-person asymmetric interaction in virtual and augmented realities," Computer Animation and Virtual Worlds, vol. n/a, no. n/a. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1985
  12. T. Kang, M. Chae, E. Seo, M. Kim, and J. Kim, "Deephandsvr: Hand interface using deep learning in immersive virtual reality," Electronics, vol. 9, no. 11, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/11/1863
  13. J. Kim, "Vivr: Presence of immersive interaction for visual impairment virtual reality," IEEE Access, vol. 8, pp. 196 151-196 159, 2020. https://doi.org/10.1109/ACCESS.2020.3034363
  14. J. Lee, M. Kim, and J. Kim, "A study on immersion and vr sickness in walking interaction for immersive virtual reality applications," Symmetry, vol. 9, no. 5, 2017. [Online]. Available: https://www.mdpi.com/2073-8994/9/5/78
  15. I. E. Sutherland, "A head-mounted three dimensional display," in Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I, ser. AFIPS'68 (Fall, part I). New York, NY, USA: ACM, 1968, pp. 757-764. [Online]. Available: http://doi.acm.org/10.1145/1476589.1476686
  16. W. Fitzpatrick, M. Wickert, and S. Semwal, "3d sound imaging with head tracking," in 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), 2013, pp. 216-221.
  17. H.-Y. Huang, C.-W. Ning, P.-Y. Wang, J.-H. Cheng, and L.-P. Cheng, "Haptic-go-round: A surrounding platform for encounter-type haptics in virtual reality experiences," in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, ser. CHI '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 1-10. [Online]. Available: https://doi.org/10.1145/3313831.3376476
  18. A. Schroeder, E. Goodnight, M. Kuhner, W. Gerner, M. Hebel, and D. Gorlich, "Infinite walking in three dimensions in virtual reality: A shopping mall simulator game," in Extended Abstracts of the 2020 Annual Symposium on Computer-Human Interaction in Play, ser. CHI PLAY '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 76-79. [Online]. Available: https://doi.org/10.1145/3383668.3419918
  19. R. S. Johansson, G. Westling, A. Backstrom, and J. R. Flanagan, "Eye-hand coordination in object manipulation," The Journal of Neuroscience, vol. 21, no. 17, pp. 6917-6932, 2001. https://doi.org/10.1523/jneurosci.21-17-06917.2001
  20. J. Pelz, R. Canosa, J. Babcock, and J. Barber, "Visual perception in familiar, complex tasks," in Proceedings of the 2001 International Conference on Image Processing. IEEE Computer Society, 2001, pp. 12-15. [Online]. Available: http://scholarworks.rit.edu/other/137
  21. J. Meng, S. Paul, and Y. C. Hu, "Coterie: Exploiting frame similarity to enable high-quality multiplayer vr on commodity mobile devices," in Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 923-937. [Online]. Available: https://doi.org/10.1145/3373376.3378516
  22. C. Rockstroh, J. Blum, and A. Goritz, "A mobile vr-based respiratory biofeedback game to foster diaphragmatic breathing," Virtual Reality, vol. 25, pp. 1-14, 06 2021. https://doi.org/10.1007/s10055-020-00431-z
  23. E. M. Kolasinski, Simulator sickness in virtual environments. U.S. Army Research Institute for the Behavioral and Social Sciences, 1995.
  24. T. A. Stoffregen and L. S. Jr., "Postural instability precedes motion sickness," Brain Research Bulletin, vol. 47, no. 5, pp. 437 - 448, 1998. https://doi.org/10.1016/S0361-9230(98)00102-6
  25. H. B.-L. Duh, D. E. Parker, J. O. Philips, and T. A. Furness, "Conflicting motion cues to the visual and vestibular self-motion systems around 0.06 hz evoke simulator sickness," Human Factors, vol. 46, no. 1, pp. 142-154, 2004. https://doi.org/10.1518/hfes.46.1.142.30384
  26. J. D. Moss and E. R. Muth, "Characteristics of head-mounted displays and their effects on simulator sickness," Human factors, vol. 53, no. 3, pp. 308-319, 2011. https://doi.org/10.1177/0018720811405196
  27. UnityTechnologies, "Unity engine," Unity Technologies, 2021. [Online]. Available: https://unity3d.com/
  28. GoogleVR, "Googlevr sdk for unity v1.200.1," Google Developers, 2019. [Online]. Available: https://github.com/googlevr/gvr-unity-sdk/releases
  29. K. Jeong, S. Han, D. Lee, and J. Kim, "A Study on Virtual Reality Techniques for Immersive Traditional Fairy Tale Contents Production," Journal of the Korea Computer Graphics Society, vol. 22, pp. 43-52, 2016. https://doi.org/10.15701/kcgs.2016.22.3.43
  30. J. Thomas and E. S. Rosenberg, "Reactive alignment of virtual and physical environments using redirected walking," in 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 2020, pp. 317-323.
  31. R. K. Kammerlander, A. Pereira, and S. Alexanderson, "Using virtual reality to support acting in motion capture with differently scaled characters," in 2021 IEEE Virtual Reality and 3D User Interfaces (VR), 2021, pp. 402-410.
  32. A. Lund, "Measuring usability with the use questionnaire," Usability Interface, vol. 8, no. 2, pp. 3-6, 01 2001.
  33. R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, "Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness," The International Journal of Aviation Psychology, vol. 3, no. 3, pp. 203-220, 1993. [Online]. Available: http://dx.doi.org/10.1207/s15327108ijap0303 3
  34. S. Bouchard, J. St-Jacques, P. Renaud, and B. K. Wiederhold, "Side effects of immersions in virtual reality for people suffering from anxiety disorders," Journal of Cybertherapy and Rehabilitation, vol. 2, no. 2, pp. 127-137, 2009.

Cited by

  1. Design of Handwriting-based Text Interface for Support of Mobile Platform Education Contents vol.27, pp.5, 2021, https://doi.org/10.15701/kcgs.2021.27.5.81