References
- Peng, Xue Bin, et al. "Deepmimic: Example-guided deep reinforcement learning of physics-based character skills." ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-14, 2018.
- Coros, Stelian, Philippe Beaudoin, and Michiel Van de Panne. "Generalized biped walking control." ACM Transactions on Graphics (TOG), vol. 29, no. 4, pp. 1-9, 2010.
- Ye, Yuting, and C. Karen Liu. "Optimal feedback control for character animation using an abstract model." ACM SIGGRAPH 2010 papers, pp. 1-9, 2010.
- Yin, KangKang, Kevin Loken, and Michiel Van de Panne. "Simbicon: Simple biped locomotion control." ACM Transactions on Graphics(TOG), vol. 26, no. 3, pp. 105-es, 2007. https://doi.org/10.1145/1276377.1276509
- Agrawal, Shailen, Shuo Shen, and Michiel van de Panne. "Diverse motion variations for physics-based character animation." Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 37-44, 2013.
- Ha, Sehoon, and C. Karen Liu. "Iterative training of dynamic skills inspired by human coaching techniques." ACM Transactions on Graphics (TOG), vol. 34, no. 1, pp. 1-11, 2014.
- Wang, Jack M., et al. "Optimizing locomotion controllers using biologically-based actuators and objectives." ACM Transactions on Graphics (TOG), vol. 31, no. 4, pp. 1-11, 2012.
- Da Silva, Marco, Yeuhi Abe, and Jovan Popovic. "Simulation of human motion data using short-horizon model-predictive control." Computer Graphics Forum. Oxford, UK. Blackwell Publishing Ltd, vol. 27, no. 2, pp. 371-380, 2008.
- Lee, Yoonsang, Sungeun Kim, and Jehee Lee. "Data-driven biped control." ACM SIGGRAPH 2010 papers, pp. 1-8, 2010.
- Lee, Yoonsang, et al. "Locomotion control for many-muscle humanoids." ACM Transactions on Graphics (TOG), vol. 33, no. 6, pp. 1-11, 2014.
- Mordatch, Igor, Emanuel Todorov, and Zoran Popovic. "Discovery of complex behaviors through contact-invariant optimization." ACM Transactions on Graphics (TOG), vol. 31, no. 4, pp. 1-8, 2012.
- Wampler, Kevin, Zoran Popovic, and Jovan Popovic. "Generalizing locomotion style to new animals with inverse optimal regression." ACM Transactions on Graphics (TOG), vol. 33, no. 4, pp. 1-11, 2014.
- Hamalainen, Perttu, Joose Rajamaki, and C. Karen Liu. "Online control of simulated humanoids using particle belief propagation." ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp. 1-13, 2015.
- Tassa, Yuval, Tom Erez, and Emanuel Todorov. "Synthesis and stabilization of complex behaviors through online trajectory optimization." 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 4906-4913, 2012.
- Lee, Yongjoon, et al. "Motion fields for interactive character locomotion." ACM SIGGRAPH Asia 2010 papers, pp. 1-8, 2010.
- Levine, Sergey, et al. "Continuous character control with low-dimensional embeddings." ACM Transactions on Graphics (TOG), vol. 31, no. 4, pp. 1-10, 2012. https://doi.org/10.1145/2185520.2185524
- Coros, Stelian, Philippe Beaudoin, and Michiel Van de Panne. "Robust task-based control policies for physics-based characters." ACM SIGGRAPH Asia 2009 papers, pp. 1-9, 2009.
- Peng, Xue Bin, Glen Berseth, and Michiel Van de Panne. "Dynamic terrain traversal skills using reinforcement learning." ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp. 1-11, 2015.
- Brockman, Greg, et al. "Openai gym." arXiv preprint arXiv:1606.01540, 2016.
- Duan, Yan, et al. "Benchmarking deep reinforcement learning for continuous control." International conference on machine learning. PMLR, pp. 1329-1338, 2016.
- Liu, Libin, and Jessica Hodgins. "Learning to schedule control fragments for physics-based characters using deep q-learning." ACM Transactions on Graphics (TOG), vol. 36, no. 3, pp. 1-14, 2017.
- Peng, Xue Bin, Glen Berseth, and Michiel Van de Panne. "Terrain-adaptive locomotion skills using deep reinforcement learning." ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1-12, 2016.
- Rajeswaran, Aravind, et al. "Learning complex dexterous manipulation with deep reinforcement learning and demonstrations." arXiv preprint arXiv:1709.10087, 2017.
- Teh, Yee Whye, et al. "Distral: Robust multitask reinforcement learning." arXiv preprint arXiv:1707.04175, 2017.
- Orin, David E., Ambarish Goswami, and Sung-Hee Lee. "Centroidal dynamics of a humanoid robot." Autonomous robots, vol. 35, no. 2, pp. 161-176, 2013. https://doi.org/10.1007/s10514-013-9341-4
- Dai, Hongkai, Andres Valenzuela, and Russ Tedrake. "Whole-body motion planning with centroidal dynamics and full kinematics." 2014 IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 295-302, 2014.
- Winkler, Alexander W., et al. "Gait and trajectory optimization for legged systems through phase-based end-effector parameterization." IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1560-1567, 2018. https://doi.org/10.1109/lra.2018.2798285
- Kwon, Taesoo, Yoonsang Lee, and Michiel Van De Panne. "Fast and flexible multilegged locomotion using learned centroidal dynamics." ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp. 1-46, 2020.
- Xie, Zhaoming, et al. "GLiDE: Generalizable Quadrupedal Locomotion in Diverse Environments with a Centroidal Model." arXiv preprint arXiv:2104.09771, 2021.
- Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347, 2017.
- Abe, Yeuhi, Marco Da Silva, and Jovan Popovic. "Multiobjective control with frictional contacts." Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 249-258, 2007.
- da Silva, Marco, Yeuhi Abe, and Jovan Popovic. "Interactive simulation of stylized human locomotion." ACM SIGGRAPH 2008 papers, pp. 1-10, 2008.
- Kwon, Taesoo, and Jessica K. Hodgins. "Momentum-mapped inverted pendulum models for controlling dynamic human motions." ACM Transactions on Graphics(TOG), vol. 36, no. 1, pp. 1-14, 2017.
- Ellis, Jane, et al. "CDM: Taking stock and looking forward." Energy policy, vol. 35, no. 1, pp. 15-28, 2007. https://doi.org/10.1016/j.enpol.2005.09.018
Cited by
- Research on the Application of Intelligent Choreography for Musical Theater Based on Mixture Density Network Algorithm vol.2021, 2021, https://doi.org/10.1155/2021/4337398