• Title/Summary/Keyword: generalized metric space

Search Result 108, Processing Time 0.025 seconds

EXISTENCE OF FIXED POINTS OF SET-VALUED MAPPINGS IN b-METRIC SPACES

  • Afshari, Hojjat;Aydi, Hassen;Karapinar, Erdal
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.319-332
    • /
    • 2016
  • In this paper, we introduce the notion of generalized ${\alpha}-{\psi}$-Geraghty multivalued mappings and investigate the existence of a xed point of such multivalued mappings. We present a concrete example and an application on integral equations illustrating the obtained results.

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.341-358
    • /
    • 2023
  • Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.

COMMON FIXED POINT THEOREMS UNDER GENERALIZED (ψ - ϕ)-WEAK CONTRACTIONS IN S-METRIC SPACES WITH APPLICATIONS

  • Saluja, G.S.;Kim, J.K.;Lim, W.H.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.13-33
    • /
    • 2021
  • The aim of this paper is to establish common fixed point theorems under generalized (ψ - ϕ)-weak contractions in the setting of complete S-metric spaces and we support our result by some examples. Also an application of our results, we obtain some fixed point theorems of integral type. Our results extend Theorem 2.1 and 2.2 of Doric [5], Theorem 2.1 of Dutta and Choudhury [6], and many other several results from the existing literature.

FIXED POINT THEOREMS FOR (𝜙, F)-CONTRACTION IN GENERALIZED ASYMMETRIC METRIC SPACES

  • Rossafi, Mohamed;Kari, Abdelkarim;Lee, Jung Rye
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.369-399
    • /
    • 2022
  • In the last few decades, a lot of generalizations of the Banach contraction principle have been introduced. In this paper, we present the notion of (𝜙, F)-contraction in generalized asymmetric metric spaces and we investigate the existence of fixed points of such mappings. We also provide some illustrative examples to show that our results improve many existing results.

DIMENSIONALLY INVARIANT SPACES

  • Baek, In Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.245-250
    • /
    • 2009
  • We consider a code function from the unit interval which has a generalized dyadic expansion into a coding space which has an associated ultra metric. The code function is not a bi-Lipschitz map but a dimension-preserving map in the sense that the Hausdorff and packing dimensions of any subset in the unit interval and its image under the code function coincide respectively.

  • PDF

FIXED AND PERIODIC POINT THEOREMS IN QUASI-METRIC SPACES

  • Cho, Seong-Hoon;Lee, Jee-Won
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.1027-1035
    • /
    • 2011
  • In this paper, we introduce the concept of generalized weak q-contractivity for multivalued maps defined on quasi-metric spaces. A new fixed point theorem for these maps is established. The convergene of iterate schem of the form $x_n+1\;{\in}\;Fx_n$ is investigated. And a new periodic point theorem for weakly q-contractive self maps of quasi-metric spaces is proved.

A Coupled Fixed Point Theorem for Mixed Monotone Mappings on Partial Ordered G-Metric Spaces

  • Lee, Hosoo
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.485-500
    • /
    • 2014
  • In this paper, we establish coupled fixed point theorems for mixed monotone mappings satisfying nonlinear contraction involving a pair of altering distance functions in ordered G-metric spaces. Via presented theorems we extend and generalize the results of Harjani et al. [J. Harjani, B. L$\acute{o}$pez and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011) 1749-1760] and Choudhury and Maity [B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 54 (2011), 73-79].

COUPLED COINCIDENCE POINT RESULTS FOR GENERALIZED SYMMETRIC MEIR-KEELER CONTRACTION ON PARTIALLY ORDERED METRIC SPACES WITH APPLICATION

  • Deshpande, Bhavana;Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.79-98
    • /
    • 2017
  • We establish a coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X{\times}X{\rightarrow}X$ under generalized symmetric Meir-Keeler contraction on a partially ordered metric space. We also deduce certain coupled fixed point results without mixed monotone property of $F:X{\times}X{\rightarrow}X$. An example supporting to our result has also been cited. As an application the solution of integral equations are obtain here to illustrate the usability of the obtained results. We improve, extend and generalize several known results.

EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED NONLINEAR CONTRACTION WITH APPLICATIONS

  • Deshpande, Bhavana;Handa, Amrish;Thoker, Shamim Ahmad
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.333-354
    • /
    • 2016
  • We present coincidence point theorem for g-non-decreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We show how multidimensional results can be seen as simple consequences of our unidimensional coincidence point theorem. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X^2{\rightarrow}X$ by using obtained coincidence point results. Furthermore, an example and an application to integral equation are also given to show the usability of obtained results. Our results generalize, modify, improve and sharpen several well-known results.

ON THE C-PROJECTIVE VECTOR FIELDS ON RANDERS SPACES

  • Rafie-Rad, Mehdi;Shirafkan, Azadeh
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1005-1018
    • /
    • 2020
  • A characterization of the C-projective vector fields on a Randers space is presented in terms of 𝚵-curvature. It is proved that the 𝚵-curvature is invariant for C-projective vector fields. The dimension of the algebra of the C-projective vector fields on an n-dimensional Randers space is at most n(n + 2). The generalized Funk metrics on the n-dimensional Euclidean unit ball 𝔹n(1) are shown to be explicit examples of the Randers metrics with a C-projective algebra of maximum dimension n(n+2). Then, it is also proved that an n-dimensional Randers space has a C-projective algebra of maximum dimension n(n + 2) if and only if it is locally Minkowskian or (up to re-scaling) locally isometric to the generalized Funk metric. A new projective invariant is also introduced.