DOI QR코드

DOI QR Code

EXISTENCE OF FIXED POINTS OF SET-VALUED MAPPINGS IN b-METRIC SPACES

  • Afshari, Hojjat (Faculty of Basic Science, University of Bonab) ;
  • Aydi, Hassen (University of Dammam, Department of Mathematics. College of Education - Jubail) ;
  • Karapinar, Erdal (Atilim University, Department of Mathematics)
  • Received : 2015.07.15
  • Accepted : 2016.02.22
  • Published : 2016.05.31

Abstract

In this paper, we introduce the notion of generalized ${\alpha}-{\psi}$-Geraghty multivalued mappings and investigate the existence of a xed point of such multivalued mappings. We present a concrete example and an application on integral equations illustrating the obtained results.

Keywords

References

  1. A. Felhi, S. Sahmim, and H. Aydi, Ulam-Hyers stability and well-posedness of fixed point problems for $\alpha$- $\lambda$-contractions on quasi b-metric spaces, Fixed Point Theory Appl. (2016), 2016:1. https://doi.org/10.1186/s13663-015-0491-2
  2. M. U. Ali, T. Kamran, and E. Karapinar, On ($\alpha$, $\psi$, $\eta$)-contractive multivalued mappings, Fixed Point Theory Appl. (2014), 2014:7. https://doi.org/10.1186/1687-1812-2014-7
  3. H. Aydi, M.F. Bota, E. Karapinar, and S. Moradi, A common fixed point for weak $\phi$-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), no. 2, 337-346.
  4. H. Aydi, E. Karapinar, M.F. Bota, and S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012:88. https://doi.org/10.1186/1687-1812-2012-88
  5. H. Aydi, A. Felhi, and S. Sahmim, Common fixed points in rectangular b-metric spaces using (E:A) property, Journal of Advanced Mathematical Studies, 8 (2015), no. 2, 159-169.
  6. H. Aydi, M. Jellali, and E. Karapinar, Common fixed points for generalized $\alpha$-implicit contractions in partial metric spaces: Consequences and application, RACSAM, 109 (2015), no. 2, 367-384. https://doi.org/10.1007/s13398-014-0187-1
  7. H. Aydi, M. Jellali, and E. Karapinar, On fixed point results for $\alpha$-implicit contractions in quasi-metric spaces and consequences, Nonlinear Analysis: Modelling and Control, 21 (2016), no. 1, 40-56.
  8. H. Aydi, E. Karapinar, and B. Samet, Fixed points for generalized ($\alpha$, $\psi$)-contractions on generalized metric spaces, Journal Ineq. Appl. (2014), 2014:229. https://doi.org/10.1186/1029-242X-2014-229
  9. A. Azam, N. Mehmood, J. Ahmad, and S. Radenovic, Multivalued fixed point theorems in cone b-metric spaces, Journal Ineq. Appl. 2013, 2013:582. https://doi.org/10.1186/1029-242X-2013-582
  10. S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 (1998), no. 2, 263-276.
  11. S. Czerwik, Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11.
  12. M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604-?08. https://doi.org/10.1090/S0002-9939-1973-0334176-5
  13. M. Jleli, B. Samet, C. Vetro, and F. Vetro, Fixed points for multivalued mappings in b-metric spaces, Abstract and Applied Analysis, Volume 2015, Article ID 718074, 7 pages.
  14. M. Jovanovic, Z. Kadelburg, and S. Radenovic, Common fixed point results in metric-type spaces, Fixed Point Theory Appl. Volume 2010, Article ID 978121, 15 pages.
  15. H. Huang, and S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl. (2013), 2013:112. https://doi.org/10.1186/1687-1812-2013-112
  16. N. Hussian, and M.H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl. 62 (2011), 1677-1684. https://doi.org/10.1016/j.camwa.2011.06.004
  17. E. Karapinar, and B. Samet, Generalized $\alpha$-$\psi$-contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, Volume 2012 (2012), Article ID 793486, 17 pages.
  18. E. Karapinar, Fixed point theorems on $\alpha$-$\psi$-Geraghty contraction type mappings, Filomat (2014), 761-766.
  19. E. Karapinar, $\alpha$-$\psi$-Geraghty contraction type mappings and some related fixed point results, Filomat (2014), 37-48.
  20. E. Karapinar, P. Kumam, and P. Salimi, On $\alpha$-$\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl. (2013), 2013:94. https://doi.org/10.1186/1687-1812-2013-94
  21. B. Mohammadi, Sh. Rezapour, and N.Shahzad Some results of fixed point of $\alpha$-$\psi$-quasi-contractive multifunctions, Fixed Point Theory Appl. (2013), 2013:112. https://doi.org/10.1186/1687-1812-2013-112
  22. B. Mohammadi, S Rezapour, and N Shahzad, Some results on fixed points of $\alpha$-$\psi$-Ciric generalized multifunctions, Fixed Point Theory Appl. (2013), 2013:24. https://doi.org/10.1186/1687-1812-2013-24
  23. O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. (2014), 2014:190 https://doi.org/10.1186/1687-1812-2014-190
  24. J.R. Roshan, V. Parvaneh, Sh. Sedghi, N. Shobkolaei, and W. Shatanawi, Common fixed points of almost generalized $({\psi}-{\varphi})_s$-contraction mappings in ordered b-metric spaces. Fixed Point Theory Appl. (2013), 2013:159. https://doi.org/10.1186/1687-1812-2013-159
  25. B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014
  26. R.J. Shahkoohi, and A. Razani, Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, Journal Ineq. Appl. (2014), 2014:373. https://doi.org/10.1186/1029-242X-2014-373
  27. L. Shi, and S. Xu, Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces, Fixed Point Theory Appl. (2013), 2013:120. https://doi.org/10.1186/1687-1812-2013-120

Cited by

  1. Sehgal Type Contractions on b-Metric Space vol.10, pp.11, 2018, https://doi.org/10.3390/sym10110560
  2. Solution of fractional differential equations via α−ψ$\alpha-\psi$-Geraghty type mappings vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1807-4
  3. Some results on fixed point theory for a class of generalized nonexpansive mappings vol.2018, pp.1, 2018, https://doi.org/10.1186/s13663-018-0644-1
  4. Common fixed point results on an extended b-metric space vol.2018, pp.1, 2018, https://doi.org/10.1186/s13660-018-1745-4
  5. Existence and approximative fixed points for multifunctions pp.1793-7183, 2019, https://doi.org/10.1142/S1793557119500220
  6. Non-Unique Fixed Point Results in Extended B-Metric Space vol.6, pp.5, 2018, https://doi.org/10.3390/math6050068
  7. Fisher-Type Fixed Point Results in b-Metric Spaces vol.7, pp.1, 2019, https://doi.org/10.3390/math7010102
  8. A Proposal for Revisiting Banach and Caristi Type Theorems in b-Metric Spaces vol.7, pp.4, 2016, https://doi.org/10.3390/math7040308
  9. Recent Advances on the Results for Nonunique Fixed in Various Spaces vol.8, pp.2, 2016, https://doi.org/10.3390/axioms8020072
  10. F-contractive type mappings in b-metric spaces and some related fixed point results vol.2019, pp.1, 2019, https://doi.org/10.1186/s13663-019-0663-6
  11. Multivalued $ \varphi $ -Contractions on Extended $ b$ -Metric Spaces vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/5989652
  12. Some Valid Generalizations of Boyd and Wong Inequality and $ \left(\psi ,\phi \right)$ -Weak Contraction in Partially Ordered $ b-$ Metric Spaces vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/9307302
  13. Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel vol.2020, pp.1, 2016, https://doi.org/10.1186/s13662-020-02592-2
  14. Further results on existence of positive solutions of generalized fractional boundary value problems vol.2020, pp.1, 2020, https://doi.org/10.1186/s13662-020-03065-2
  15. A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces vol.2020, pp.1, 2016, https://doi.org/10.1186/s13662-020-03076-z
  16. Terminal Value Problem for Implicit Katugampola Fractional Differential Equations in $ b $ -Metric Spaces vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5535178
  17. Revisiting Ciric type nonunique fixed point theorems via interpolation vol.22, pp.2, 2016, https://doi.org/10.4995/agt.2021.16562