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EXISTENCE OF FIXED POINTS OF SET-VALUED

MAPPINGS IN b-METRIC SPACES

Hojjat Afshari, Hassen Aydi, and Erdal Karapınar

Abstract. In this paper, we introduce the notion of generalized α − ψ-

Geraghty multivalued mappings and investigate the existence of a fixed

point of such multivalued mappings. We present a concrete example and
an application on integral equations illustrating the obtained results.

1. Introduction

The notion of b-metric was proposed by Czerwik [10, 11] to generalize the
concept of a distance. The analog of the famous Banach fixed point theorem
was proved by Czerwik in the frame of complete b-metric spaces. Following
these initial papers, the existence and the uniqueness of (common) fixed points
for the classes of both singlevalued and multivalued operators in the setting
of (generalized) b-metric spaces have been investigated extensively, (see e.g.
[1, 3, 4, 5, 9, 13, 14, 15, 16, 24, 26, 27] and related references therein.)

Recently, Samet et al. [25] introduced the notion of α-admissible mappings
to combine some existing fixed point results in distinct setting. This idea was
extended by Karapınar and Samet in [17] by introducing the notion of general-
ized α − ψ-contractive type mappings. Following this trend several interesting
results have been reported, see e.g. [2, 6, 7, 8, 18, 19, 20, 21, 22] and related
references therein.

In this manuscript, we introduce the notion of generalized α − ψ-Geraghty
multivalued mappings in the context of complete b-metric spaces and examine
the existence of fixed points for such mappings.

Throughout the paper, the standard letters R, R+
0 , N0 and N will denote

the set of all real numbers, the set of all nonnegative real numbers, the set
of all nonnegative integer numbers and the set of all positive integer numbers,
respectively.

In what follows, we collect some basic notions, notations and fundamental
results in the literature.
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Definition 1. [11] Let X be a nonempty set and s ≥ 1 be a given real number.
A mapping d : X × X → R+

0 is said to be a b-metric if for all x, y, z ∈ X the
following conditions are satisfied:

(bM1) d(x, y) = 0 if and only if x = y;
(bM2) d(x, y) = d(y, x);
(bM3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

Remark 1. Since a metric space turns into a b-metric space by taking the con-
stant s = 1, the class of b-metric spaces is larger than the class of metric spaces.

The following example shows that there exists a b-metric which is not a
metric.

Example 1.1. Let X = {a, b, c} with 0 < a < 2b < c and d : X ×X → [0,∞)
be defined by

d(a, b) = b, d(a, c) =
b

2
and d(b, c) = c,

with d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈ X. Notice that d is not a
metric since d(b, c) > d(a, b) + d(a, c). However, it is easy to see that d is a
b-metric space with s ≥ 2.

One of the most interesting example of b-metric is the following.

Example 1.2. Let X = [0, 1] and d : X ×X → [0,∞) be defined by

d(a, b) = |x2 − y2|, for all x, y ∈ X.
It is clear that d is not a metric, but it is easy to see that d is a b-metric space
with s ≥ 2.

Let (X, d) be a b-metric space. Take Pb,cl(X) the set of bounded and closed
sets in X. For x ∈ X and A,B ∈ Pb,cl(X), as in [10], we define

D(x,A) = inf
a∈A

d(x, a),

D(A,B) = sup
a∈A

D(a,B).

Define a mapping H : Pb,cl(X)× Pb,cl(X)→ [0,∞) such that

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,B)},

for every A,B ∈ CB(X). Then, the mapping H forms a b-metric and it is called
as the Hausdorff b-metric induced by the b-metric d.

Again, from [10], we cite the following lemmas.

Lemma 1.3. [10] Let (X, d) be a b-metric space. For any A,B ∈ Pb,cl(X) and
any x, y ∈ X, we have the following:
(1) D(x,B) ≤ d(x, b) for any b ∈ B,
(2) D(x,B) ≤ H(A,B),
(3) D(x,A) ≤ s(d(x, y) +D(y,B).
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Lemma 1.4. [10] Let A and B be nonempty closed and bounded subsets of a
b-metric space (X, d) and q > 1. Then, for all a ∈ A, there exists b ∈ B such
that d(a, b) ≤ qH(A,B).

Definition 2. [23] Let (X, d) be a b-metric space. X is said α-regular, if for
every sequence {xn} in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as
n→∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥
1 for all k.

Definition 3. [21] Let T : X → Pb,cl(X) be a multivalued mapping and α :
X ×X → [0,∞) be a given function. Then T is said to be α-admissible if

(T3) α(x, y) ≥ 1 for all y ∈ Tx,⇒ α(y, z) ≥ 1, for all z ∈ Ty.

In this paper, we introduce a generalized multivalued contraction via α-
admissible mappings in the setting of b-metric spaces and we establish several
fixed point results: existence and uniqueness. A concrete example and an appli-
cation on integral equation are also provided illustrating the obtained results.

2. Main results

In this section, we introduce first the notion of a generalized α−ψ-Geraghty
[12] contraction type multivalued mapping in the setting of b-metric spaces.
After then, we state and prove our main result.

Let Ψ be set of all increasing and continuous functions ψ : [0,∞) → [0,∞)
satisfying the following property: ψ(ct) ≤ cψ(t) for all c > 1. We denote by F
the family of all functions β : [0,∞)→ [0, 1

s2 ) for some s ≥ 1.

Definition 4. Let (X, d) be a b-metric space and T : X → Pb,cl(X) be a
multivalued mapping. We say that T is a generalized α−ψ-Geraghty contraction
type multivalued mapping whenever there exist α : X ×X → [0,∞) and some
L ≥ 0 such that for

M(x, y) = max{d(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) +D(y, Tx)

2s
} (1)

and N(x, y) = min{D(x, Tx), D(y, Tx)}, (2)

we have

α(x, y)ψ(s3H(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) + Lφ(N(x, y)),(3)

for all x, y ∈ X, where β ∈ F and ψ, φ ∈ Ψ.

Remark 2. The functions belonging to F are strictly smaller than 1
s2 . Then,

the expression β(ψ(M(x, y))) in (3) satisfies

β(ψ(M(x, y))) <
1

s2
for any x, y ∈ X with x 6= y.
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Theorem 2.1. Let (X, d) be a complete b-metric space and T : X → Pb,cl(X)
be a generalized α−ψ-Geraghty contraction type multivalued mapping such that
(i) T is α-admissible;
(ii) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) T is continuous .
Then, T has a fixed point.

Proof. For s = 1, the proof is too similar to a paper of Mohammadi et al. [22].
So, from now on, we suppose that s > 1. By condition (ii), there exists x0 ∈ X
and x1 ∈ Tx0 such that α(x0, x1) ≥ 1. If x1 = x0, then we have nothing to
prove. Let x1 6= x0. If x1 ∈ Tx1, then x1 is a fixed point of T . Now, assume
that x1 /∈ Tx1. Let us take a real q such that 1 < q < s. Then

0 < ψ(D(x1, Tx1)) ≤ α(x0, x1)ψ(H(Tx0, Tx1)) < qα(x0, x1)ψ(s3H(Tx0, Tx1)).

Hence, there exists x2 ∈ Tx1 such that

ψ(d(x1, x2)) < qα(x0, x1)ψ(s3H(Tx0, Tx1))(4)

≤ qβ(ψ(M(x0, x1)))ψ(M(x0, x1)) + qLφ(N(x0, x1))

<
q

s2
ψ(M(x0, x1)) + qLφ(N(x0, x1)),

where

M(x0, , x1) = max{d(x0, , x1), D(x0, Tx0), D(x1, Tx1),
D(x0, Tx1) +D(x1, Tx0)

2s
}

≤ max{d(x0, , x1), D(x1, Tx1),
D(x0, Tx1)

2s
}

≤ max{d(x0, , x1), D(x1, Tx1),
D(x0, Tx1)

2s
}

and

N(x0, , x1) = min{D(x0, Tx0), D(x1, Tx0)}
≤ min{d(x0, , x1), d(x1, x1)} = 0.

Since

D(x0, Tx1)

2s
≤ s[d(x0, x1) +D(x1, Tx1)]

2s
≤ max{d(x0, x1), D(x1, Tx1)},

then we get

M(x0, , x1) ≤ max{d(x0, , x1), D(x1, Tx1)}.

If max{d(x0, , x1), D(x1, Tx1)} = D(x1, Tx1), then by (4), we have

ψ(D(x1, Tx1)) ≤ ψ(d(x1, x2)) <
q

s2
ψ(D(x1, Tx1)) < ψ(D(x1, Tx1)),

which is a contradiction. Hence, we obtain max{d(x0, , x1), D(x1, Tx1)} =
d(x0, x1) and then by (4),

ψ(d(x1, x2)) ≤ q

s2
ψ(d(x0, x1)).
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Having in mind that ψ ∈ Ψ and q
s2 < 1, hence

ψ(
s2

q
d(x1, x2)) ≤ s2

q
ψ(d(x1, x2)) < ψ(d(x0, x1)).(5)

Since ψ is increasing, we have

d(x1, x2) ≤ q

s2
d(x0, x1).

Recall that x2 ∈ Tx1 and x1 /∈ Tx1, so it is clear that x2 6= x1. Put

q1 =
q
s2ψ(d(x0, x1))

ψ(d(x1, x2))
.

By (5), we have q1 > 1. If x2 ∈ Tx2, then x2 is a fixed point of T . Assume that
x2 /∈ Tx2. Then,

0 < ψ(d(x2, Tx2)) ≤ α(x1, x2)ψ(H(Tx1, Tx2)) < q1α(x1, x2)ψ(s3H(Tx1, Tx2)).

Hence, there exists x3 ∈ Tx2 such that

ψ(d(x2, x3)) < q1α(x1, x2)ψ(s3H(Tx1, Tx2))

≤ q1β(ψ(M(x1, x2)))ψ(M(x1, x2)) + q1Lφ(N(x1, x2))

<
q1
s2
ψ(M(x1, x2)) + q1Lφ(N(x1, x2)).

Similarly, M(x1, x2) ≤ d(x1, x2) and N(x1, x2) = 0. So in addition to (4),

ψ(d(x2, x3)) ≤ q1
s2
ψ(d(x1, x2)) ≤ (

q

s2
)2ψ(d(x0, x1)).

Again by (5), we obtain

d(x2, x3) ≤ (
q

s2
)2d(x0, x1)

It is clear that x2 6= x1. Put

q2 =
( q
s2 )2ψ(d(x0, x1))

ψ(d(x2, x3))
.

Then q2 > 1. If x3 ∈ Tx3, then x3 is a fixed point of T . Assume that x3 /∈ Tx3.
Then,

0 < ψ(d(x3, Tx3)) ≤ α(x2, x3)ψ(H(Tx2, Tx3)) < q2α(x2, x3)ψ(s3H(Tx2, Tx3)).

Thus, there exists x4 ∈ Tx3 such that

ψ(d(x3, x4)) < q2α(x2, x3)ψ(s3H(Tx2, Tx3))(6)

≤ q2β(ψ(M(x2, x3)))ψ(M(x2, x3)) + q2Lφ(N(x2, x3))

<
q2
s2
ψ(M(x2, x3)) + q2Lφ(N(x2, x3)).

Similarly M(x2, x3) ≤ d(x2, x3) and N(x2, x3) = 0. So by (6),

ψ(d(x3, x4)) ≤ q2
s2
ψ(d(x2, x3)) ≤ (

q

s2
)3ψ(d(x0, x1)).
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Similarly, from (5), we obtain

d(x3, x4) ≤ (
q

s2
)3d(x0, x1).

It is clear that x3 6= x2. Put

q3 =
( q
s2 )3ψ(d(x0, x1))

ψ(d(x2, x3))
.

Then q3 > 1. By continuing this process, we obtain a sequence {xn} in X such
that xn ∈ Txn−1, xn 6= xn−1 and d(xn, xn+1) < ( q

s2 )nd(x0, x1) for all n.
For n < m, by the triangle inequality

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .

+ sm−n−2[d(xm−2, xm−1) + d(xm−1, xm)])

≤ s( q
s2

)n(1 + s(
q

s2
) + s2(

q

s2
)2 + . . .)d(x0, x1)

= [
s( q

s2 )n

1− s( q
s2 )

]d(x0, x1)→ 0 as n→∞.

Therefore, for n < m, we obtain

d(xn, xm)→ 0 as n→∞.(7)

Therefore

lim
m,n→∞

d(xn, xm) = 0.

We deduce that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete
b-metric space, so there exists x∗ ∈ X such that lim

n→∞
xn = x∗. The mapping T

is continuous, so

D(x?, Tx?) = lim
n→∞

D(xn+1, Tx
?) ≤ lim

n→∞
H(Txn, Tx

?) = 0

and so x? ∈ Tx?. �

It is possible to remove the continuity of the mapping T in the above theorem
by replacing it with a suitable new condition, that is, X is α-regular.

Theorem 2.2. Let (X, d) be a complete b-metric space and T : X → Pb,cl(X)
be a generalized α−ψ-Geraghty contraction type multivalued mapping such that
(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) X is α-regular.
Then T has a fixed point.

Proof. Following the lines in the proof of Theorem 2.1, we conclude that lim
n→∞

xn =

x∗. If X is α-regular, then since α(xn, xn+1) ≥ 1, so there exists a subsequence
{xnk

} of {xn} such that

α(xnk
, x∗) ≥ 1,(8)
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for all k. By triangular inequality

D(x∗, Tx∗) ≤ sd(x∗, xnk+1) + sD(xnk+1, Tx
∗)

≤ sd(x∗, xnk+1) + sH(Txnk
, Tx∗).

Let k tend to infinity

D(x∗, Tx∗) ≤ lim
k→∞

sH(Txnk
, Tx∗).(9)

Having ψ ∈ Ψ, (8) and (9), so

ψ(s2D(x∗, Tx∗)) ≤ lim
k→∞

ψ(s3H(Txnk
, Tx∗)) ≤ lim

k→∞
α(xnk+1

, x∗)ψ(sH(Txnk
, Tx∗))

≤ lim
k→∞

[β(ψ(M(xnk
, x∗)))ψ(M(xnk

, x∗)) + Lφ(N(xnk
, x∗))].

(10)

We have

M(xnk
, x∗) = max{d(xnk

, x∗), D(xnk
, Txnk

), D(x∗, Tx∗),
D(xnk

, Tx∗) +D(x∗, Txnk
)

2s
}

≤ max{d(xnk
, x∗), d(xnk

, xnk+1
), D(x∗, Tx∗),

D(xnk
, Tx∗) + d(x∗, xnk+1

)

2s
},

and

N(xnk
, x∗) = min{D(xnk

, Txnk
), D(x∗, Txnk

)}
≤ min{d(xnk

, xnk+1
), d(x∗, xnk+1

)}.
Recall that

D(xnk
, Tx∗) + d(x∗, xnk+1

)

2s
≤
sd(xnk

, x∗) + sD(x∗, Tx∗) + d(x∗, xnk+1
)

2s
.

Then, by (7), we get that

lim sup
k→∞

D(xnk
, Tx∗) + d(x∗, xnk+1

)

2s
≤ D(x∗, Tx∗)

2
.

When k tends to infinity, we deduce

lim
k→∞

M(xnk
, x∗) = D(x∗, Tx∗),

and

lim
k→∞

N(xnk
, x∗) = 0.

Since lim
k→∞

β(ψ(M(xnk
, x∗))) ≤ 1

s2
, so by (10)

ψ(s2D(x∗, Tx∗)) ≤ 1

s2
ψ(D(x∗, Tx∗)).

Since ψ ∈ Ψ, the above holds unless D(x∗, Tx∗) = 0, that is, x∗ ∈ Tx∗ and x∗

is a fixed point of T . �

For the uniqueness of a fixed point of a generalized α−ψ contractive mapping,
we will consider the following hypothesis.
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(H) For all x, y ∈ Fix(T ), either α(x, y) ≥ 1 or α(y, x) ≥ 1.

Here, Fix(T ) denotes the set of fixed points of T .

Theorem 2.3. Adding condition (H) to hypotheses of Theorem 2.1 (respec-
tively, Theorem 2.2 ), we obtain uniqueness of the fixed point of T .

Proof. Suppose that x∗ and y∗ are two fixed points of T . Then, it is obvious
that M(x∗, y∗) = d(x∗, y∗) and N(x∗, y∗) = 0. So

ψ(d(x∗, y∗)) ≤ ψ(s3H(Tx∗, T y∗))

≤ α(x∗, y∗)ψ(s3H(Tx∗, T y∗))

≤ β(ψ(M(x∗, y∗)))ψ(M(x∗, y∗)) + Lφ(N(x∗, y∗))

<
1

s2
ψ(d(x∗, y∗)) < ψ(d(x∗, y∗)),

which is contradiction. �

The following result can be derived from Theorem 2.3, by taking L = 0.

Corollary 2.4. Let (X, d) be a complete b-metric space and T : X → Pb,cl(X)
be a multivalued mapping. Suppose that there exist α : X × X → [0,∞) such
that

α(x, y)ψ(s3H(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)),(11)

for all x, y ∈ X, where β ∈ F , ψ, φ ∈ Ψ and

M(x, y) = max{d(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) +D(y, Tx)

2s
}. (12)

Suppose also that
(i) T is α-admissible;
(ii) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) T is continuous or X is α-regular.
Then T has a fixed point. Moreover, if (H) is satisfied, then the obtained fixed
point is unique.

Corollary 2.5. Let (X, d) be a complete b-metric space and T : X → Pb,cl(X)
be a multivalued mapping. Suppose that there exist α : X × X → [0,∞) such
that

α(x, y)ψ(s3H(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)),(13)

for all x, y ∈ X, where β ∈ F and ψ, φ ∈ Ψ . Suppose also that (i) T is α-
admissible;
(ii) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) T is continuous or X is α-regular.
Then, T has a fixed point. Moreover, if (H) is satisfied, then the obtained fixed
point is unique.

Regarding the analogy of the proof with Theorem 2.1, Theorem 2.2 and
Theorem 2.3, we omit the proof
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3. Consequences

Definition 5. Let (X, d) be a b-metric space and T : X → X be a mapping. We
say that T is a generalized α−ψ-Geraghty contraction type mapping whenever
there exist α : X ×X → [0,∞) and some L ≥ 0 such that for

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
} (14)

and N(x, y) = min{d(x, Tx), d(y, Tx)}, (15)

we have

α(x, y)ψ(s3d(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) + Lφ(N(x, y)),(16)

for all x, y ∈ X, where β ∈ F and ψ, φ ∈ Ψ.

Corollary 3.1. Let (X, d) be a complete b-metric space and T : X → X be a
generalized α− ψ-Geraghty contraction type mapping such that
(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) either T is continuous or X is α-regular.
Then, T has a fixed point. Moreover, if (H) is satisfied, then the obtained fixed
point is unique.

Corollary 3.2. Let (X, d) be a complete b-metric space and T : X → X be a
mapping. If there exist α : X ×X → [0,∞) and some L ≥ 0 such that

α(x, y)ψ(s3d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)) + Lφ(N(x, y)),(17)

for all x, y ∈ X, where β ∈ F and ψ, φ ∈ Ψ and

and N(x, y) = min{d(x, Tx), d(y, Tx)}. (18)

Suppose also that (i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) either T is continuous or X is α-regular.
Then, T has a fixed point. Moreover, if (H) is satisfied, then the obtained fixed
point is unique.

By letting α(x, y) = 1 for all x, y ∈ X, we get the following consequences:

ψ(s3d(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) + Lφ(N(x, y)),(19)

for all x, y ∈ X, where β ∈ F and ψ, φ ∈ Ψ.

Corollary 3.3. Let (X, d) be a complete b-metric space and T : X → X be a
generalized α− ψ-Geraghty contraction type mapping. If T is continuous, then
T has a fixed point.

Corollary 3.4. Let (X, d) be a complete b-metric space and T : X → X be a
continuous mapping. If there exists L ≥ 0 such that

ψ(s3d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)) + Lφ(N(x, y)),(20)
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for all x, y ∈ X, where β ∈ F and ψ, φ ∈ Ψ and

and N(x, y) = min{d(x, Tx), d(y, Tx)}. (21)

Then, T has a fixed point.

If in (20) we let L = 0 then we obtain the following sequence.

Corollary 3.5. Let (X, d) be a complete b-metric space and T : X → X be a
continuous mapping such that

ψ(s3d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)),(22)

for all x, y ∈ X, where β ∈ F and ψ, φ ∈ Ψ. Then, T has a fixed point.

We present the following example.

Example 3.6. Let X be the set of Lebesgue measurable functions on [0, 1] such

that
∫ 1

0
|x(t)|dt < 1. Define d : X ×X :→ [0,∞) by

d(x, y) =

∫ 1

0

|x(t)− y(t)|2dt.

Then, d is a b-metric on X, with s = 2. The operator T : X → X is defined by

Tx(t) =
1

8
ln(1 + |x(t)|).

Consider the mapping α : X ×X → [0,∞)

α(x, y) =

{
1 if x ≥ y,
0 otherwise.

We take β : [0,∞)→ [0, 14 ) and ψ : [0,∞)→ [0,∞) as

ψ(t) = t and β(t) =
t2 + 1

4t2 + 8
.

Evidently, ψ ∈ Ψ and β ∈ F . Moreover, T is α-admissible mapping and
α(1, T1) ≥ 1. Now, we prove that T is a generalized α−ψ-Geraghty contraction
type mapping.

α(x(t), y(t))ψ(s3d(Tx(t), Ty(t))) ≤ 23(

∫ 1

0

|Tx(t)− Ty(t)|2dt)

= 23
∫ 1

0

|1
8
ln(1 + |x(t)|)− 1

8
ln(1 + |y(t)|)|2dt

= 2−3
∫ 1

0

|ln(
1 + |x(t)|
1 + |y(t)|

)|2dt = 2−3
∫ 1

0

|ln(1 +
|x(t)| − |y(t)|

1 + |y(t)|
)|2dt

≤ 2−3
∫ 1

0

|ln(1 + |x(t)− y(t)|)|2dt ≤ 2−3
∫ 1

0

|x(t)− y(t)|2dt

= 2−3d(x, y) ≤ d(x, y)2 + 1

4d(x, y)2 + 8
d(x, y) = β(d(x, y)d(x, y).
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From above inequalities, remark that

d(Tx, Ty) ≤ 1

26
d(x, y),

that is, it is obvious that T is continuous in (X, d). Thus, by corollary 3.2 (with
L = 0), we see that T has a fixed point.

4. Application

Let X = C([0, 1],R) be the set of real continuous functions defined on [0, 1]
and let d : X ×X → [0,∞) be given by

d(x, y) =‖ (x− y)2 ‖∞= sup
t∈[0,1]

(x(t)− y(t))2,

for all x, y ∈ X. Then, (X, d) is a complete b-metric space with s = 2. We
consider the following integral equation

x(t) = P (t) +

∫ 1

0

S(t, u)f(u, x(u))du, t ∈ [0, 1],(23)

where f : [0, 1] × R → R and P : [0, 1] → R are two continuous functions and
S : [0, 1] × [0, 1] → [0,∞) is a function such that S(t, .) ∈ L1([0, 1]) for all
t ∈ [0, 1].
Consider the operator T : X → X defined by

T (x)(t) = P (t) +

∫ 1

0

S(t, u)f(u, x(u))du, t ∈ [0, 1].(24)

Theorem 4.1. Let X = C([0, 1],R). Suppose there exist η : X ×X → [0,∞),
α : X ×X → [0,∞) and β : [0,∞) → [0, 14 ) such that the following conditions
are satisfied:
(i) for all u ∈ [0, 1] and for all x, y ∈ X;

0 ≤ |f(u, x(u))− f(u, y(u))| ≤ η(x, y)|x(u)− y(u)|,

and

‖
∫ 1

0

S(t, u)η(x, y)du ‖2∞≤
β(‖ (x− y)2 ‖∞)

α(x, y)
;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) α(x, Tx) ≥ 1⇒ α(Tx, T 2x) ≥ 1;
(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.
Then, the integral equation (23) has a solution in X.
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Proof. Clearly, any fixed point of (24) is a solution of (23). By condition (i),
we obtain

α(x, y)|T (x)(t)− T (y)(t)|2 = α(x, y)[|
∫ 1

0

S(t, u)[f(u, x(u))− f(u, y(u))]du|]2

≤ α(x, y)[

∫ 1

0

S(t, u)|f(u, x(u))− f(u, y(u))|du]2

≤ α(x, y)[

∫ 1

0

S(t, u)η(x, y)
√
|x(u)− y(u)|2du]2

≤ α(x, y)[

∫ 1

0

S(t, u)η(x, y)
√
‖ (x− y)2 ‖∞

2
du]2

= α(x, y)‖ (x− y)2 ‖∞[

∫ 1

0

S(t, u)η(x, y)du]2.

Then, we have

α(x, y) ‖ (T (x)− T (y))2 ‖∞ ≤ α(x, y)‖ (x− y)2 ‖∞ ‖
∫ 1

0

S(t, u)η(x, y)du ‖2∞

≤ β(‖ (x− y)2 ‖∞) ‖ (x− y)2 ‖∞ .

Thus, for all x, y ∈ X, we obtain

α(x, y)d(T (x), T (y)) ≤ β(d(x, y))d(x, y).

This implies that corollary 3.2 holds with ψ(t) = t and L = 0. Hence, the
operator T has a fixed point, that is, the integral equation (24) has a solution
in X. �

The following example illustrates Theorem 4.1.

Example 4.2. Take X = C([0, 1],R). Consider the following functional inte-
gral equation

x(t) =
t2

1 + t2
+

1

27

∫ 1

0

ucost

54(1 + t)

|x(u)|
1 + |x(u)|

du,(25)

for t ∈ [0, 1]. Observe that the equation (25) is a spatial case of (23) with

P (t) =
t2

1 + t2
,

S(t, u) =
u

3(1 + t)
,

f(t, x) =
cost

18

|x|
(1 + |x|)

.

Consider the operator T : X → X defined by

T (x)(t) = P (t) +

∫ 1

0

S(t, u)f(u, x(u))du, t ∈ [0, 1]
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Define the mapping α : X ×X → [0,∞) as

α(x(t), y(t)) =

{
1 if x(t) ≥ y(t),
0 otherwise.

Take β : [0,∞)→ [0, 14 ) as

β(t) =
t2 + 1

4t2 + 8
.

Let η(x, y) = 1. For arbitrary fixed x, y ∈ R such that x ≥ y, we obtain

|f(t, x)− f(t, y)| = |cost
18

|x|
(1 + |x|)

− cost

18

|y|
(1 + |y|)

|

≤ 1

18
|x− y| ≤ ν(x, y) |x− y|

and

‖
∫ 1

0

S(t, u)η(x, y)du ‖2∞=
1

36

≤ (‖ (x− y)2 ‖∞)2 + 1

4(‖ (x− y)2 ‖∞)2 + 8
= β(‖ (x− y)2 ‖∞).

Again, by definition of α(x, y), it follows that:
(i) α(1, T1) ≥ 1;
(ii) α(x, Tx) ≥ 1 implies that α(Tx, T 2x) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.
Hence, by using Theorem 4.1, the integral equation (25) has a solution in X.
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in cone b-metric spaces, Journal Ineq. Appl. 2013, 2013:582.

[10] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin.

Mat. Fis. Univ. Modena. 46 (1998), no. 2, 263–276.
[11] , Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1

(1993), 5–11.

[12] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604-?08.
[13] M. Jleli, B. Samet, C. Vetro, and F. Vetro, Fixed points for multivalued mappings in b-

metric spaces, Abstract and Applied Analysis, Volume 2015, Article ID 718074, 7 pages.
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