References
- R. P. Agarwal, R. K. Bisht and N. Shahzad, A comparison of various noncommuting conditions in metric fixed point theory and their applications, Fixed Point Theory Appl. 2014, Article ID 38. https://doi.org/10.1186/1687-1812-2014-38
- T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- M. Berzig and B. Samet, An extension of coupled fixed point's concept in higher dimension and applications, Comput. Math. Appl. 63 (2012), no. 8, 1319-1334. https://doi.org/10.1016/j.camwa.2012.01.018
- B. S. Choudhury and A. Kundu, A coupled coincidence point results in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
- B. Deshpande and A. Handa, Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations, Afr. Mat. 26 (2015), no. 3-4, 317-343. https://doi.org/10.1007/s13370-013-0204-0
- B. Deshpande and A. Handa, Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces, Adv. Fuzzy Syst. Volume 2014, Article ID 348069, 11 pages.
- H. S. Ding, L. Li and S. Radenovic, Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl. 2012, 96. https://doi.org/10.1186/1687-1812-2012-96
- I. M. Erhan, E. Karapinar, A. Roldan and N. Shahzad, Remarks on coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory Appl. 2014, 207. https://doi.org/10.1186/1687-1812-2014-207
- K. Goebel, A coincidence theorem, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 16 (1968), 733-735.
- D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
- N. M. Hung, E. Karapinar and N. V. Luong, Coupled coincidence point theorem for O-compatible mappings via implicit relation, Abstr. Appl. Anal. 2012, Article ID 796964.
- N. Hussain, M. Abbas, A. Azam and J. Ahmad, Coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory Appl. 2014, 62. https://doi.org/10.1186/1687-1812-2014-62
- E. Karapinar and A. Roldan, A note on n-Tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Inequal. Appl. 2013, Article ID 567. https://doi.org/10.1186/1029-242X-2013-567
- E. Karapinar, A. Roldan, C. Roldan and J. Martinez-Moreno, A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013, Article ID 310. https://doi.org/10.1186/1687-1812-2013-310
- E. Karapinar, A. Roldan, J. Martinez-Moreno and C. Roldan, Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013, Article ID 406026.
- E. Karapinar, A. Roldan, C. Roldan and J. Martinez-Moreno, A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013, Article ID 310. https://doi.org/10.1186/1687-1812-2013-310
-
E. Karapinar, A. Roldan, N. Shahzad and W. Sintunavarat, Discussion on coupled and tripled coincidence point theorems for
$\phi$ -contractive mappings without the mixed g-monotone property, Fixed Point Theory Appl. 2014, Article ID 92. https://doi.org/10.1186/1687-1812-2014-92 - V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
- N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
- N. V. Luong and N. X. Thuan, Coupled points in ordered generalized metric spaces and application to integro-differential equations, Comput. Math. Appl. 62 (2011), no. 11, 4238-4248. https://doi.org/10.1016/j.camwa.2011.10.011
- S. A. Al-Mezel, H. Alsulami, E. Karapinar and A. Roldan, Discussion on multidimensional coincidence points via recent publications, Abstr. Appl. Anal. Volume 2014, Article ID 287492, 13 pages.
- A. Roldan, J. Martinez-Moreno and C. Roldan, Multidimensional fixed point theorems in partially ordered metric spaces, J. Math. Anal. Appl. 396 (2012), 536-545. https://doi.org/10.1016/j.jmaa.2012.06.049
- A. Roldan, J. Martinez-Moreno, C. Roldan and E. Karapinar, Some remarks on multidimensional fixed point theorems, Fixed Point Theory 15 (2014), no. 2, 545-558.
- A. Roldan, J. Martinez-Moreno, C. Roldan and E. Karapinar, Some remarks on multidimensional fixed point theorems, Fixed Point Theory Appl. 2013, Article ID 158. https://doi.org/10.1186/1687-1812-2013-158
- B. Samet, E. Karapinar, H. Aydi and V. C. Rajic, Discussion on some coupled fixed point theorems, Fixed Point Theory Appl. 2013, 50. https://doi.org/10.1186/1687-1812-2013-50
- S. Wang, Coincidence point theorems for G-isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. (2013), 1687-1812-2013-96.
- S.Wang, Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 137. https://doi.org/10.1186/1687-1812-2014-137
Cited by
- MULTIDIMENSIONAL COINCIDENCE POINT RESULTS FOR CONTRACTION MAPPING PRINCIPLE vol.26, pp.4, 2019, https://doi.org/10.7468/jksmeb.2019.26.4.277
- UTILIZING ISOTONE MAPPINGS UNDER MIZOGUCHI-TAKAHASHI CONTRACTION TO PROVE MULTIDIMENSIONAL FIXED POINT THEOREMS WITH APPLICATION vol.26, pp.4, 2019, https://doi.org/10.7468/jksmeb.2019.26.4.289
- EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED GERAGHTY-TYPE CONTRACTION WITH APPLICATION vol.27, pp.3, 2016, https://doi.org/10.7468/jksmeb.2020.27.3.109