DOI QR코드

DOI QR Code

EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED NONLINEAR CONTRACTION WITH APPLICATIONS

  • Received : 2015.07.16
  • Accepted : 2016.01.12
  • Published : 2016.05.31

Abstract

We present coincidence point theorem for g-non-decreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We show how multidimensional results can be seen as simple consequences of our unidimensional coincidence point theorem. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X^2{\rightarrow}X$ by using obtained coincidence point results. Furthermore, an example and an application to integral equation are also given to show the usability of obtained results. Our results generalize, modify, improve and sharpen several well-known results.

Keywords

References

  1. R. P. Agarwal, R. K. Bisht and N. Shahzad, A comparison of various noncommuting conditions in metric fixed point theory and their applications, Fixed Point Theory Appl. 2014, Article ID 38. https://doi.org/10.1186/1687-1812-2014-38
  2. T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
  3. M. Berzig and B. Samet, An extension of coupled fixed point's concept in higher dimension and applications, Comput. Math. Appl. 63 (2012), no. 8, 1319-1334. https://doi.org/10.1016/j.camwa.2012.01.018
  4. B. S. Choudhury and A. Kundu, A coupled coincidence point results in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
  5. B. Deshpande and A. Handa, Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations, Afr. Mat. 26 (2015), no. 3-4, 317-343. https://doi.org/10.1007/s13370-013-0204-0
  6. B. Deshpande and A. Handa, Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces, Adv. Fuzzy Syst. Volume 2014, Article ID 348069, 11 pages.
  7. H. S. Ding, L. Li and S. Radenovic, Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl. 2012, 96. https://doi.org/10.1186/1687-1812-2012-96
  8. I. M. Erhan, E. Karapinar, A. Roldan and N. Shahzad, Remarks on coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory Appl. 2014, 207. https://doi.org/10.1186/1687-1812-2014-207
  9. K. Goebel, A coincidence theorem, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 16 (1968), 733-735.
  10. D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
  11. N. M. Hung, E. Karapinar and N. V. Luong, Coupled coincidence point theorem for O-compatible mappings via implicit relation, Abstr. Appl. Anal. 2012, Article ID 796964.
  12. N. Hussain, M. Abbas, A. Azam and J. Ahmad, Coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory Appl. 2014, 62. https://doi.org/10.1186/1687-1812-2014-62
  13. E. Karapinar and A. Roldan, A note on n-Tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Inequal. Appl. 2013, Article ID 567. https://doi.org/10.1186/1029-242X-2013-567
  14. E. Karapinar, A. Roldan, C. Roldan and J. Martinez-Moreno, A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013, Article ID 310. https://doi.org/10.1186/1687-1812-2013-310
  15. E. Karapinar, A. Roldan, J. Martinez-Moreno and C. Roldan, Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013, Article ID 406026.
  16. E. Karapinar, A. Roldan, C. Roldan and J. Martinez-Moreno, A note on N-Fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013, Article ID 310. https://doi.org/10.1186/1687-1812-2013-310
  17. E. Karapinar, A. Roldan, N. Shahzad and W. Sintunavarat, Discussion on coupled and tripled coincidence point theorems for $\phi$-contractive mappings without the mixed g-monotone property, Fixed Point Theory Appl. 2014, Article ID 92. https://doi.org/10.1186/1687-1812-2014-92
  18. V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
  19. N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
  20. N. V. Luong and N. X. Thuan, Coupled points in ordered generalized metric spaces and application to integro-differential equations, Comput. Math. Appl. 62 (2011), no. 11, 4238-4248. https://doi.org/10.1016/j.camwa.2011.10.011
  21. S. A. Al-Mezel, H. Alsulami, E. Karapinar and A. Roldan, Discussion on multidimensional coincidence points via recent publications, Abstr. Appl. Anal. Volume 2014, Article ID 287492, 13 pages.
  22. A. Roldan, J. Martinez-Moreno and C. Roldan, Multidimensional fixed point theorems in partially ordered metric spaces, J. Math. Anal. Appl. 396 (2012), 536-545. https://doi.org/10.1016/j.jmaa.2012.06.049
  23. A. Roldan, J. Martinez-Moreno, C. Roldan and E. Karapinar, Some remarks on multidimensional fixed point theorems, Fixed Point Theory 15 (2014), no. 2, 545-558.
  24. A. Roldan, J. Martinez-Moreno, C. Roldan and E. Karapinar, Some remarks on multidimensional fixed point theorems, Fixed Point Theory Appl. 2013, Article ID 158. https://doi.org/10.1186/1687-1812-2013-158
  25. B. Samet, E. Karapinar, H. Aydi and V. C. Rajic, Discussion on some coupled fixed point theorems, Fixed Point Theory Appl. 2013, 50. https://doi.org/10.1186/1687-1812-2013-50
  26. S. Wang, Coincidence point theorems for G-isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. (2013), 1687-1812-2013-96.
  27. S.Wang, Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 137. https://doi.org/10.1186/1687-1812-2014-137

Cited by

  1. MULTIDIMENSIONAL COINCIDENCE POINT RESULTS FOR CONTRACTION MAPPING PRINCIPLE vol.26, pp.4, 2019, https://doi.org/10.7468/jksmeb.2019.26.4.277
  2. UTILIZING ISOTONE MAPPINGS UNDER MIZOGUCHI-TAKAHASHI CONTRACTION TO PROVE MULTIDIMENSIONAL FIXED POINT THEOREMS WITH APPLICATION vol.26, pp.4, 2019, https://doi.org/10.7468/jksmeb.2019.26.4.289
  3. EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED GERAGHTY-TYPE CONTRACTION WITH APPLICATION vol.27, pp.3, 2016, https://doi.org/10.7468/jksmeb.2020.27.3.109