DOI QR코드

DOI QR Code

FIXED POINT THEOREMS FOR (𝜙, F)-CONTRACTION IN GENERALIZED ASYMMETRIC METRIC SPACES

  • Rossafi, Mohamed (LASMA Laboratory Department of Mathematics, Faculty of Sciences, Dhar El Mahraz University) ;
  • Kari, Abdelkarim (Laboratory of Algebra, Analysis and Applications, Faculty of Sciences Ben M'Sik, Hassan II University) ;
  • Lee, Jung Rye (Department of Data Science, Daejin University)
  • Received : 2022.10.06
  • Accepted : 2022.11.07
  • Published : 2022.11.30

Abstract

In the last few decades, a lot of generalizations of the Banach contraction principle have been introduced. In this paper, we present the notion of (𝜙, F)-contraction in generalized asymmetric metric spaces and we investigate the existence of fixed points of such mappings. We also provide some illustrative examples to show that our results improve many existing results.

Keywords

References

  1. A.M. Aminpour, S. Khorshidvandpour & M. Mousavi: Some results in asymmetric metric spaces. Math. Eterna 2 (2012), no. 6, 533-540.
  2. S. Banach: Sur les operations dans les ensembles abstraits et leur application aux equations int'egrales. Fund. Math. 3 (1922), 133-81. https://doi.org/10.4064/fm-3-1-133-181
  3. A. Branciari: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 57 (2000), 31-37. https://doi.org/10.5486/PMD.2000.2133
  4. M. Jleli, E. Karapnar & B. Samet: Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), Paper No. ID 439. https://doi.org/10.1186/1029-242X-2014-439
  5. M. Jleli & B. Samet: A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), Paper No. 38.
  6. R. Kannan: Some results on fixed points-II. Amer. Math. Monthly 76 (1969), 405-408.
  7. A. Kari, M. Rossafi, E. Marhrani & M. Aamri: Fixed-point theorems for θ-𝜑contraction in generalized asymmetric metric spaces. Int. J. Math. Math. Sci., 2020 (2020), Article ID 8867020.
  8. A. Kari, M. Rossafi, E. Marhrani & M. Aamri: New fixed point theorems for θ-φcontraction on complete rectangular b-metric spaces. Abstr. Appl. Anal. 2020 (2020), Article ID 8833214.
  9. A. Kari, M. Rossafi, E. Marhrani & M. Aamri: Fixed-point theorem for nonlinear F-contraction via w-distance. Adv. Math. Phys. 2020 (2020), Article ID 6617517.
  10. W.A. Kirk & N. Shahzad: Generalized metrics and Caristi's theorem. Fixed Point Theory Appl. 2013 (2013), Paper No. 129.
  11. A. Mennucci: On asymmetric distances. Technical Report, Scuola Normale Superiore, Pisa, 2004
  12. H. Piri & P. Kumam: Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014 (2014), Paper No. 210.
  13. H. Piri, S. Rahrovi, H. Marasi & P. Kumam: F-Contraction on asymmetric metric spaces. J. Math. Comput. Sci. 17 (2017), 32-40. https://doi.org/10.22436/jmcs.017.01.03
  14. H. Piri, S. Rahrovi & R. Zarghami: Some fixed point theorems on generalized asymmetric metric spaces. Asian-Eur. J. Math. 14 (2021), no. 7, Article ID 2150109. doi: 10.1142/S1793557121501096.
  15. S. Reich: Some remarks concerning contraction mappings. Canad. Math. Bull. 14 (1971), no. 2, 121-124. https://doi.org/10.4153/CMB-1971-024-9
  16. I.L. Reilly, P.V. Subrahmanyam & M.K. Vamanamurthy: Cauchy sequences in quasipseudometric spaces. Monatsh. Math. 93 (1982), no. 2, 127-140. https://doi.org/10.1007/BF01301400
  17. B. Samet: Discussion on a fixed point theorem of Banach-Cacciopli type on a class of generalized metric spaces. Publ. Math. Debrecen 76 (2010), 493-494. https://doi.org/10.5486/PMD.2010.4595
  18. D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012 (2012), Paper No. 94.
  19. D. Wardowski: Solving existence problems via F-contractions. Proc. Am. Math. Soc., 146 (2018), 1585-1598. https://doi.org/10.1090/proc/13808
  20. D. Wardowski & N. Van Dung: Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math. 47 (2014), 146-155.
  21. W.A. Wilson: On quasi-metric spaces. Amer. J. Math. 53 (1931), 675-684. https://doi.org/10.2307/2371174