References
- A.M. Aminpour, S. Khorshidvandpour & M. Mousavi: Some results in asymmetric metric spaces. Math. Eterna 2 (2012), no. 6, 533-540.
- S. Banach: Sur les operations dans les ensembles abstraits et leur application aux equations int'egrales. Fund. Math. 3 (1922), 133-81. https://doi.org/10.4064/fm-3-1-133-181
- A. Branciari: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 57 (2000), 31-37. https://doi.org/10.5486/PMD.2000.2133
- M. Jleli, E. Karapnar & B. Samet: Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), Paper No. ID 439. https://doi.org/10.1186/1029-242X-2014-439
- M. Jleli & B. Samet: A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014 (2014), Paper No. 38.
- R. Kannan: Some results on fixed points-II. Amer. Math. Monthly 76 (1969), 405-408.
- A. Kari, M. Rossafi, E. Marhrani & M. Aamri: Fixed-point theorems for θ-𝜑contraction in generalized asymmetric metric spaces. Int. J. Math. Math. Sci., 2020 (2020), Article ID 8867020.
- A. Kari, M. Rossafi, E. Marhrani & M. Aamri: New fixed point theorems for θ-φcontraction on complete rectangular b-metric spaces. Abstr. Appl. Anal. 2020 (2020), Article ID 8833214.
- A. Kari, M. Rossafi, E. Marhrani & M. Aamri: Fixed-point theorem for nonlinear F-contraction via w-distance. Adv. Math. Phys. 2020 (2020), Article ID 6617517.
- W.A. Kirk & N. Shahzad: Generalized metrics and Caristi's theorem. Fixed Point Theory Appl. 2013 (2013), Paper No. 129.
- A. Mennucci: On asymmetric distances. Technical Report, Scuola Normale Superiore, Pisa, 2004
- H. Piri & P. Kumam: Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014 (2014), Paper No. 210.
- H. Piri, S. Rahrovi, H. Marasi & P. Kumam: F-Contraction on asymmetric metric spaces. J. Math. Comput. Sci. 17 (2017), 32-40. https://doi.org/10.22436/jmcs.017.01.03
- H. Piri, S. Rahrovi & R. Zarghami: Some fixed point theorems on generalized asymmetric metric spaces. Asian-Eur. J. Math. 14 (2021), no. 7, Article ID 2150109. doi: 10.1142/S1793557121501096.
- S. Reich: Some remarks concerning contraction mappings. Canad. Math. Bull. 14 (1971), no. 2, 121-124. https://doi.org/10.4153/CMB-1971-024-9
- I.L. Reilly, P.V. Subrahmanyam & M.K. Vamanamurthy: Cauchy sequences in quasipseudometric spaces. Monatsh. Math. 93 (1982), no. 2, 127-140. https://doi.org/10.1007/BF01301400
- B. Samet: Discussion on a fixed point theorem of Banach-Cacciopli type on a class of generalized metric spaces. Publ. Math. Debrecen 76 (2010), 493-494. https://doi.org/10.5486/PMD.2010.4595
- D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012 (2012), Paper No. 94.
- D. Wardowski: Solving existence problems via F-contractions. Proc. Am. Math. Soc., 146 (2018), 1585-1598. https://doi.org/10.1090/proc/13808
- D. Wardowski & N. Van Dung: Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math. 47 (2014), 146-155.
- W.A. Wilson: On quasi-metric spaces. Amer. J. Math. 53 (1931), 675-684. https://doi.org/10.2307/2371174