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FIXED POINT THEOREMS FOR (φ, F )-CONTRACTION
IN GENERALIZED ASYMMETRIC METRIC SPACES

Mohamed Rossafi a, Abdelkarim Kari b and Jung Rye Lee c, ∗

Abstract. In the last few decades, a lot of generalizations of the Banach con-
traction principle have been introduced. In this paper, we present the notion of
(φ, F )-contraction in generalized asymmetric metric spaces and we investigate the
existence of fixed points of such mappings. We also provide some illustrative exam-
ples to show that our results improve many existing results.

1. Introduction

Banach contraction principle is considered to be the initial result of the study of
fixed point theory in metric spaces [2]. Various generalizations of it appeared in the
literature, much mathematics steadied many interesting extensions and generaliza-
tions (see [6, 9, 15, 18]) and the recent works of Wardowski in [18, 19, 20].

In 2018, Wardowski [19] analysed a generalization of the Banach fixed point
theorem on metric spaces in a new type of contraction mappings on metric space
called F -φ-contraction. Very recently Kari et al. [9] extended Wardowskis ideas
to the case of nonlinear F -contraction via w-distance and studied the solution of
certain integral equations under a suitable set of hypotheses.

A well known, several generalizations of standard metric spaces have appeared.
In particular, asymmetric metric spaces were introduced by Wilson [21] and then
studied by many authors (see [1, 11, 13, 16]). In 2000, for the first time generalized
metric spaces were introduced by Branciari [3], in such a way that triangle inequality
is replaced by the quadrilateral inequality d(x, y) ≤ d(x, z) + d(z, u) + d(u, y) for all
pairwise distinct points x, y, z and u. Any metric space is a generalized metric
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space but in general, generalized metric space might not be a metric space. Various
fixed point results were established on such spaces (see [4, 5, 10, 17]) and references
therein.

Combining conditions used for definitions of asymmetric metric and generalized
metric spaces, Piri et al. [14] announced the notions of generalized asymmetric met-
ric space, and formulated some first fixed point theorems for θ-contraction mapping
in generalized asymmetric metric space.

In this paper, inspired by the interest aroused θ-φ-contraction introduced in [8],
we introduce the notion of (φ, F )-contraction and establish some new fixed point
theorems for mappings in the setting of complete generalized asymmetric metric
spaces. Our results generalize, improve and extend the corresponding results due to
Kannan and Reich. Moreover, an illustrative example is presented to support the
obtained results.

2. Preliminaries

In the following, we recollect some definitions which will be useful in our main
results.

Definition 2.1 ([3]). Let X be a non-empty set and d : X×X → R+ be a function
such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them different
from x and y, one has

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all distinct points x, y ∈ X;
(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (quadrilateral inequality).

Then (X, d) is called a generalized metric space.

Definition 2.2 ([14]). Let X be a non-empty set and d : X × X → R+ be a
function such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them
different from x and y, one has

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (quadrilateral inequality).

Then (X, d) is called a generalized asymmetric metric space.

Definition 2.3 ([14]). Let (X, d) is a generalized asymmetric metric space and
{xn}n∈N be a sequence in X, and x ∈ X.
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(i) We say that {xn}n∈N is forward (backward) convergent to x if

lim
n→+∞ d (x, xn) = 0 ( lim

n→+∞ d (xn, x) = 0).

(ii) We say that {xn}n∈N is forward (backward) Cauchy if

lim
n,m→+∞,n<m

d (xn, xm) = 0 ( lim
n,m→+∞,n<m

d (xm, xn) = 0).

Example 2.4 ([7]). Let X = A ∪ B, where A = {0, 2} and B = { 1
n , n ∈ N∗} and

d : X ×X → [0, +∞[ be defined by




d (0, 2) = d (2, 0) = 1

d

(
1
n

, 0
)

=
1
n

, d

(
0,

1
n

)
= 1

d

(
1
n

, 2
)

= 1, d

(
2,

1
n

)
=

1
n

d

(
1
n

,
1
m

)
= d

(
1
m

,
1
n

)
= 1.

for all n, m ∈ N∗, n 6= m. Then (X, d) is a generalized asymmetric metric space.
However, we have the following:

1) (X, d) is not a metric space, since d
(

1
n , 0

) 6= d
(
0, 1

n

)
for all n > 1.

2) (X, d) is not a asymmetric metric space, since d (2, 0) = 1 > 1
2 = d

(
2, 1

4

)
+

d
(

1
4 , 0

)
.

3) (X, d) is not a rectangular metric space, since d
(

1
n , 2

) 6= d
(
2, 1

n

)
for all

n > 1.

Remark 2.5 ([7]). Let (X, d) be as in Example 2.4 and { 1
n}n∈N∗ be a sequence in

X. Then we have the following:

i) lim
n→+∞ d

(
1
n , 0

)
= 0, lim

n→+∞ d
(

1
n , 2

)
= 1 and lim

n→+∞ d
(
0, 1

n

)
= 1, lim

n→+∞ d
(
2, 1

n

)
=

0. Thus the sequence { 1
n} is forward convergent to 2 and is backward con-

vergent to 0. So the limit is not unique.
ii) lim

n,m→+∞,m>n
d

(
1
m , 1

n

)
= lim

n,m→+∞,m<n
d

(
1
m , 1

n

)
= 1. So forward (backward)

convergence does not imply forward (backward) Cauchy.

Lemma 2.6 ([14]). Let (X, d) be a generalized asymmetric metric space and {xn}n

be a forward (or backward) Cauchy sequence with pairwise disjoint elements in X.
If {xn}n is forward convergent to x ∈ X and backward convergent to y ∈ X, then x
= y.
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Definition 2.7 ([14]). Let (X, d) be a generalized asymmetric metric space. Then
X is said to be forward (backward) complete if every forward (backward) Cauchy
sequence {xn}n in X is forward (backward) convergent to x ∈ X.

Definition 2.8 ([14]). Let (X, d) be a generalized asymmetric metric space. Then
X is said to be complete if X is forward and backward complete.

The following definition was introduced by Wardowski.

Definition 2.9 ([18]). Let z be the family of all functions F : R+ → R such that

(i) F is strictly increasing;
(ii) for each sequence {xn}n∈N of positive numbers,

lim
n→0

xn = 0 if and only if lim
n→∞F (xn) = −∞;

(iii) there exists k ∈ ]0, 1[ such that limx→0 xkF (x) = 0.

Recently, Piri and Kuman [12] extended the result of Wardowski [18] by changing
the condition (iii) in Definition 2.9 as follows:

Definition 2.10 ([12]). Let Γ be the family of all functions F : R+ → R such that

(i) F is strictly increasing;
(ii) for each sequence {xn}n∈N of positive numbers,

lim
n→∞xn = 0 if and only if lim

n→∞F (xn) = −∞;

(iii) F is continuous.

The following result introduced by Wardowski [19] will be used to prove our
result.

Definition 2.11 ([19]). Let F be the family of all functions F : R+ → R and Φ be
the family of all functions φ : ]0,+∞[ → ]0, +∞[ satisfying the following.

(i) F is strictly increasing;
(ii) for each sequence {xn}n∈N of positive numbers,

lim
n→∞xn = 0 if and only if lim

n→∞F (xn) = −∞;

(iii) lim infs→α+ φ(s) > 0 for all α > 0;
(iv) there exists k ∈ ]0, 1[ such that

lim
x→0+

xkF (x) = 0.
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By replacing the condition (iv) in Definition 2.11, we introduce new class of
F -φ-contraction.

Definition 2.12. Let = be the family of all functions F : R+ → R and Φ be the
family of all functions φ : ]0, +∞[ → ]0,+∞[ satisfying the following.

(i) F is strictly increasing;
(ii) for each sequence {xn}n∈N of positive numbers,

lim
n→∞xn = 0 if and only if lim

n→∞F (xn) = −∞;

(iii) lim infs→α+ φ(s) > 0 for all α > 0;
(iv) F is continuous.

Definition 2.13 ([19]). Let (X, d) be a metric space. A mapping T : X → X is
called a (φ, F )-contraction on (X, d), if there exist F ∈ F and φ ∈ Φ such that

F (d(Tx, Ty)) + φ (d(x, y)) ≤ F (d(x, y))

for all x, y ∈ X with Tx 6= Ty.

Theorem 2.14 ([19]). Let (X, d) be a complete metric space and T : X → X be an
F -φ-contraction. Then T has a unique fixed point.

3. Main Results

In this paper, using the idea introduced by Wardowski, we present the concept of
F -φ-contraction in generalized asymmetric metric spaces and we prove some fixed
point results in such spaces.

Definition 3.1. Let (X, d) be a generalized asymmetric metric space and T : X →
X be a mapping.

(1) T is said to be a (φ, F )-contraction of type (F) if there exist F ∈ F and
φ ∈ Φ such that for all x, y ∈ X with max{d (Tx, Ty) , d (Ty, Tx)} > 0, we
have

F

[
d

(
d (Tx, Ty) + d (Ty, Tx)

2

)]
+ φ

[
d

(
d (x, y) + d (y, x)

2

)]

≤ F

[
d

(
d (x, y) + d (y, x)

2

)]
.
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(2) T is said to be a (φ, F )-contraction of type (=) if there exist F ∈ = and
φ ∈ Φ such that for all x, y ∈ X with max{d (Tx, Ty) , d (Ty, Tx)} > 0, we
have

F

[
d

(
d (Tx, Ty) + d (Ty, Tx)

2

)]
+ φ

[
d

(
d (x, y) + d (y, x)

2

)]
≤ F [M (x, y)] ,

where

M (x, y)

= max
{
d

(
d (x, y) + d(y, x)

2

)
, d

(
d (x, Tx) + d (Tx, x)

2

)
, d

(
d (y, Ty) + d (Ty, y)

2

)}
.

(3) T is said to be a (φ, F )-Kannan-type (=) contraction if there exist F ∈ =
and φ ∈ Φ such that for all x, y ∈ X with max{d (Tx, Ty) , d (Ty, Tx)} > 0,
we have

F

[
d

(
d (Tx, Ty) + d (Ty, Tx)

2

)]
+ φ

[
d

(
d (x, y) + d (y, x)

2

)]

≤ F

(
d (x, Tx) + d (Tx, x) + d (y, Ty) + d (Ty, y)

4

)
.

(4) T is said to be a (φ, F )-Reich-type (=) contraction if there exist F ∈ F and
φ ∈ Φ such that for all x, y ∈ X with max{d (Tx, Ty) , d (Ty, Tx)} > 0, we
have

F

[
d

(
d (Tx, Ty) + d (Ty, Tx)

2

)]
+ φ

[
d

(
d (x, y) + d (y, x)

2

)]

≤ F

(
d (x, y) + d (y, x) + d (x, Tx) + d (Tx, x) + d (y, Ty) + d (Ty, y)

6

)
.

Theorem 3.2. Let (X, d) be a generalized asymmetric metric space and T : X → X

be a mapping. Suppose that there exist F ∈ F and φ ∈ Φ such that for all x, y ∈ X

with max{d (Tx, Ty) , d (Ty, Tx)} > 0, we have
(3.1)

F

[
d (Tx, Ty) + d (Ty, Tx)

2

]
+ φ

[
d

(
d (x, y) + d (y, x)

2

)]
≤ F

[
d (x, y) + d (y, x)

2

]
.

Then T has a unique fixed point.

Proof. Let x0 ∈ X be fixed and define a sequence {xn} by xn+1 = Txn = Tn+1x0 for
all n ∈ N. If there exists n0 ∈ N such that d (xn0 , xn0+1) = 0 or d (xn0+1,xn0) = 0,
then the proof is finished.
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Now, suppose that d (xn, xn+1) > 0 and d (xn+1,xn) > 0 for all n ∈ N. Then we
have

max {d (xn, xn+1) , d (xn+1,xn)} > 0.

Letting x = xn−1 and y = xn in (3.1) for all n ∈ N, we have

F

[
d (xn, xn+1) + d (xn+1,xn)

2

]

≤ F

(
d (xn−1, xn) + d (xn, xn−1)

2

)
− φ

(
d (xn−1, xn) + d (xn, xn−1)

2

)
,∀n ∈ N.

Now, we set D (xn, xm) = d (xn, xm) + d (xm, xn) . Then

F

(
D (xn, xn+1)

2

)
≤ F

(
D (xn−1, xn)

2

)
− φ

[
D (xn−1, xn)

2

]
.

Repeating this step, we conclude that

F

(
D (xn, xn+1)

2

)
≤ F

(
D (xn−1, xn)

2

)
− φ

[
D (xn−1, xn)

2

]

≤ F

(
D (xn−2, xn−1)

2

)
− φ

[
D (xn−1, xn)

2

]
− φ

[
D (xn−2, xn−1)

2

]

≤ ... ≤ F

(
D (x0, x1)

2

)
−

n∑

i=0

φ

[
D (xi, xi+1)

2

]
.

Since F is increasing, we get

(3.2) D (xn, xn+1) < D (xn−1, xn) .

Since lim infs→α+ φ(s) > 0, we have lim infn→∞ φ(D (xn−1, xn)) > 0. From the
definition of the limit, there exist n0 ∈ N and A > 0 such that for all n ≥ n0,
φ(D (xn−1, xn)) > A. Thus

F (D (xn, xn+1)) ≤ F (D (x0, x1))−
n0−1∑

i=0

φ(D (xi, xi+1))−
n∑

i=n0−1

φ(D (xi, xi+1))

≤ F (D (x0, x1))−
n∑

i=n0−1

A

= F (D (x0, x1))− (n− n0)A

for all n ≥ n0. Taking the limit as n →∞ in the above inequality, we get

(3.3) lim
n→∞F (D (xn, xn+1)) ≤ lim

n→∞ [F (D (x0, x1))− (n− n0)A] ,
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that is, limn→∞ F (D (xn, xn+1)) = −∞. From the condition (ii) of Definition 2.11,
we conclude that

(3.4) lim
n→∞D (xn,xn+1) = 0.

Next, we shall prove that

lim
n→∞ d (xn, xn+2) = 0 and lim

n→∞ d (xn+2, xn) = 0.

Assume that xn 6= xm for all n,m ∈ with N, n 6= m. Indeed, suppose that xn = xm

for some n = m + k with k > 0. Then we have xn+1 = Txn = Txm = xm+1.
So, from the assumption of the theorem, we get

F

(
D (xm, xm+1)

2

)
= F

(
D (xn, xn+1)

2

)

≤ F

(
D (xn−1, xn)

2

)
− φ

(
D (xn−1, xn)

2

)
< F

(
D (xn−1, xn)

2

)
.

By (3.2), we have

D (xm, xm+1) = D (xn, xn+1) < D (xn−1, xn) .

Continuing this process, we can obtain that

D (xm, xm+1) < D (xm, xm+1) .

This is a contradiction. Therefore,

max {d (xm, xn) , d (xn, xm)} > 0

for all n, m ∈ N with n 6= m.
Letting x = xn−1 and y = xn+1 in (3.1) for all n ∈ N, we have

F

(
D (xn, xn+2)

2

)
≤

(
F

(
D (xn−1, xn+1)

2

))
− φ

[
D (xn−1, xn+1)

2

]
.

Repeating this step, we conclude that

F

(
D (xn, xn+2)

2

)
≤

(
F

(
D (xn−1, xn+1)

2

))
− φ

[
D (xn−1, xn+1)

2

]

≤ F

(
D (xn−2, xn)

2

)
− φ

[
D (xn−1, xn+1)

2

]
− φ

[
D (xn−2, xn)

2

]

≤ ... ≤ F

(
D (x0, x2)

2

)
−

n∑

i=0

φ

[
D (xi, xi+2)

2

]
.
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Since lim infs→α+ φ(s) > 0, we have lim infn→∞ φ(D (xn−1, xn+1)) > 0. From the
definition of the limit, there exist n1 ∈ N and B > 0 such that for all n ≥ n0,
φ(D (xn−1, xn)) > B. Thus

F (D (xn, xn+2)) ≤ F (D (x0, x2))−
n1−1∑

i=0

φ(D (xi, xi+2))−
n∑

i=n1−1

φ(D (xi, xi+2))

≤ F (D (x0, x2))−
n∑

i=n1−1

B

= F (D (x0, x2))− (n− n1)B

for all n ≥ n1. Taking the limit as n →∞ in the above inequality, we get

lim
n→∞F (D (xn, xn+2)) ≤ lim

n→∞ [F (D (x0, x2))− (n− n1)B] ,

that is, limn→∞ F (D (xn, xn+2)) = −∞. From the condition (ii) of Definition 2.11,
we conclude that

(3.5) lim
n→∞D (xn,xn+2) = 0.

Next, we shall prove that {xn}n∈N is a Cauchy sequence, i.e., limn,m→∞ d (xn,xm) =
0 for all n,m ∈ N. Now, from (iv) of Definition 2.11, there exists k ∈ ]0, 1[ such that

lim
n→∞ [D (xn, xn+1)]

k F (D (xn, xn+1)) = 0.

Since

F [D (xn, xn+1)] ≤ F [D (x0, x1)]− (n− n0)A,

we have

[D (xn, xn+1)]
k F [D (xn, xn+1)]

≤ [D (xn, xn+1)]
k F [D (x0, x1)]− [(n− n0)A] [D (xn, xn+1)]

k

Therefore,

[D (xn, xn+1)]
k F [D (xn, xn+1)]− [D (xn, xn+1)]

k F [D (x0, x1)]

≤ − [(n− n0)A] [D (xn, xn+1)]
k

≤ 0.

Taking the limit n →∞ in the above inequality, we conclude that

lim
n→∞D (xn,xn+1)

k (n− n0)A = 0.
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Then there exists h ∈ N such that

(3.6) D (xn,xn+1) ≤ 1

[(n− n0)A]k
for all n ≥ h.

Now, from (iv) of Definition 2.11, there exists k ∈ ]0, 1[ such that

lim
n→∞ [D (xn, xn+2)]

k F (D (xn, xn+2)) = 0.

Since

F [D (xn, xn+2)] ≤ F [D (x0, x2)]− (n− n1)B,

we have

[D (xn, xn+2)]
k F [D (xn, xn+2)]

≤ [D (xn, xn+2)]
k F [D (x0, x2)]− [(n− n1)B] [D (xn, xn+2)]

k .

Therefore,

[D (xn, xn+2)]
k F [D (xn, xn+2)]− [D (xn, xn+2)]

k F [D (x0, x2)]

≤ − [(n− n1)B] [D (xn, xn+2)]
k

≤ 0.

Taking the limit n →∞ in the above inequality, we conclude that

lim
n→∞D (xn,xn+2)

k (n− n1)B = 0.

Then there exists l ∈ N such that

(3.7) D (xn,xn+2) ≤ 1

[(n− n1)B]k
, ∀ n ≥ l.

Next, we show that {xn}n∈N is a Cauchy sequence, i.e.,

lim
n→∞D (xn, xn+r) = 0, ∀r ∈ N∗.

The cases r = 1 and r = 2, are proved, respectively, by (3.4) and (3.5).
Now, we take r ≥ 3. It is sufficient to examine two cases:
Case I: Suppose that r = 2m + 1, where m ≥ 1.

By using the quadrilateral inequality and (3.6), we have
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D (xn, xn+r) = D (xn, xn+2m+1)

≤ D (xn, xn+1) + D (xn+1, xn+2) + D (xn+2, xn+2m+1)

≤ D (xn, xn+1) + D (xn+1, xn+2) + ... + D (xn+2m, xn+2m+1)

≤ 1

[(n− n0)A]k
+

1

[(n + 1− n0)A]k
+ ... +

1

[(n− n + 2m− n0)A]k

=
i=2m+n∑

i=n

1

[(i− n0)A]k

≤
i=∞∑

i=n

1

[(i− n0)A]k
.

Case II: Suppose that r = 2m, where m ≥ 1.
Let n2 = max{n0, n1} and C = max{A,B}.
By the quadrilateral inequality and (3.6) and (3.7), we have

D (xn, xn+r) = D (xn, xn+2m)

≤ D (xn, xn+2) + D (xn+2, xn+3) + D (xn+3, xn+2m)

≤ D (xn, xn+2) + D (xn+2, xn+3) + ... + D (xn+2m−1, xn+2m)

≤ 1

[(n− n1)B]k
+

1

[(n + 2− n0)A]k
+

1

[(n + 3− n0)A]k

+ ... +
1

[(n− n + 2m− 1− n0)A]k

=
1

[(n− n1)B]k
+

i=n+2m−1∑

i=n+2

1

[(i− n0)A]k

≤
i=∞∑

i=n+1

1

[(i− n2)C]k
.

From the convergence of the series
∑

i
1

[(n−n0)A]k
and

∑
i

1
[(n−n2)C]k

, since 0 < k < 1,

lim
n→∞D (xn, xn+r) = 0, i.e, lim

n→∞ d (xn, xn+r) = 0 and lim
n→∞ d (xn+r, xn) = 0.

Hence {xn} is a forward and backward Cauchy sequence in X. By completeness of
(X, d), there exist z, u ∈ X such that

lim
x→∞ d (xn, z) = lim

x→∞ d (u, xn) = 0.

So, from Lemma 2.6, we get z = u.
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Now, we show that d (Tz, z) = 0 or d (z, Tz) = 0. Arguing by contradiction, we
assume that

d (Tz, z) > 0 and d (z, Tz) > 0.

Therefore,

max {d (Tz, z) , d (z, Tz)} > 0.

Now, by the quadrilateral inequality, we get

d (Txn, T z) ≤ d (Txn, xn) + d (xn, z) + d (z, Tz) ,(3.8)

d (z, Tz) ≤ d (z, xn) + d (xn, Txn) + d (Txn, T z) .(3.9)

By letting n →∞ in (3.8) and (3.9) , we obtain

d (z, Tz) ≤ lim
n→∞ d (Txn, T z) ≤ d (z, Tz) .

Therefore,

(3.10) lim
n→∞ d (Txn, T z) = d (z, Tz)

On the other hand,

(3.11) d (Tz, Txn) ≤ d (Tz, z) + d (z, xn) + d (xn, Txn)

and

(3.12) d (Txn, T z) ≤ d (Txn, xn) + d (xn, z) + d (z, Tz) .

By letting n →∞ in (3.11) and (3.12) , we obtain

d (Tz, z) ≤ lim
n→∞ d (Tz, Txn) ≤ d (Tz, z) .

Therefore,

(3.13) lim
n→∞ d (Tz, Txn) = d (Tz, z) .

By (3.10) , and from the definition of the limit, there exists n3 ∈ N such that

d (Txn, T z) > d (z, Tz) > 0, ∀n ≥ n3.

Similarly, by (3.13) , there exists n4 ∈ N such that

d (Tz, Txn) > d (Tz, z) > 0, ∀n ≥ n4.

Let N = max {n3, n4}. Then we conclude

max {d (Tz, Txn) , d (Txn, T z)} > 0, ∀n ≥ N.
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Applying (3.1) with x = z and y = xn, we have

F

(
D (Tz, Txn)

2

)
≤ F

(
D (z, xn)

2

)
− φ

(
D (z, xn)

2

)
< F

(
D (z, xn)

2

)
, ∀n ≥ N.

Since F is increasing, we get

(3.14) D (Tz, Txn) < D (z, xn) .

By letting n →∞ in (3.14) and using (3.10) and (3.13), we obtain

lim
n→∞D (Tz, Txn) = D (Tz, z) ≤ lim

n→∞D (z, xn) = 0.

Thus d (Tz, z) = 0 and d (z, Tz) . Hence Tz = z.
Now, suppose that z, u ∈ X are two fixed points of T such that u 6= z. Then we

have
d (Tz, Tu) = d (z, u) > 0

and
d (Tu, Tz) = d (u, z) > 0.

Therefore
max {d (Tu, Tz) , d (Tz, Tu)} > 0.

Applying (3.1) with x = z and y = u, we have

F

(
D (Tz, Tu)

2

)
= F

(
D (z, u)

2

)
≤ F

(
D (z, u)

2

)
−φ

(
D (z, u)

2

)
< F

(
D (z, u)

2

)
,

which is a contradiction. Therefore u = z. ¤

Corollary 3.3. Let d (X, d) be a complete generalized asymmetric metric space and
T be a self mapping on X. If for all x, y ∈ X we have

max {d (Tx, Ty) , d (Ty,Tx)} > 0 ⇒d (Tx, Ty) + d (Ty, Tx)

≤ e
−1

1+d(x,y)+d(y,x) [d (x, y) + d (y, x)] ,

then T has a unique fixed point.

Proof. Since max {d (Tx, Ty) , d (Ty,Tx)} > 0, we can take natural logarithm in
both sides to get

ln [d (Tx, Ty) + d (Ty, Tx)] ≤ ln
[
e

−1
1+d(x,y)+d(y,x) (d (x, y) + d (y, x))

]

=
−1

1 + d (x, y) + d (y, x)
+ ln [d (x, y) + d (y, x)] .

Hence

F [d (Tx, Ty) + d (Ty, Tx)] + φ (d(x, y) + d(y, x)) ≤ F (d (x, y) + d(y, x))
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with F (t) = ln(t) and φ(t) = 1
1+t . Therefore, as in the proof of Theorem 3.2, T has

a unique fixed point z ∈ X. ¤

Corollary 3.4. Let (X, d) be a complete generalized asymmetric metric space and
T : X → X be a given mapping. Suppose that there exist F ∈ F and τ ∈ ]1, +∞[
such that for all x, y ∈ X with max {d (Tx, Ty) , d (Ty,Tx)} > 0,

F

[
d (Tx, Ty) + d (Ty, Tx)

2

]
+ τ ≤

[
F

(
d (x, y) + d (y, x)

2

)]
.

Then T has a unique fixed point.

Example 3.5. Let X = A ∪B, where A = {0, 1
2 , 1

3 , 1
4} and B = [1, 2].

Define d : X ×X → [0,+∞[ as follows:
{

d(x, y) = d(y, x), ∀x, y ∈ B;

d(x, y) = 0 ⇔ y = x, ∀x, y ∈ X

and 



d

(
1
3
,
1
4

)
= d

(
0,

1
2

)
= 0.3

d

(
1
3
, 0

)
= d

(
1
4
,
1
2

)
= 0.2

d

(
0,

1
3

)
= d

(
1
2
,
1
4

)
= 0.35

d

(
1
3
,
1
2

)
= d

(
1
3
,
1
2

)
= 0.6

d (x, y) = |x− y| otherwise.

Then (X, d) is a generalized asymmetric metric space. However, we have the follow-
ing:

1) (X, d) is not a metric space, since d
(

1
3 , 1

2

)
= 0.6 > 0.5 = d

(
1
3 , 1

4

)
+ d

(
1
4 , 1

2

)
.

2) (X, d) is not a generalized metric space, since d
(

1
2 , 1

4

)
= 0.35 6= d

(
1
4 , 1

2

)
=

0.2.

Define a mapping T : X → X by

T (x) =

{
x

1
4 if x ∈ [1, 2]

1 if x ∈ A.

Evidently, T (x) ∈ X. Let F (t) = ln(t) + t, φ(t) = 1
1+t . It is obvious that F ∈ F and

φ ∈ Φ.
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Consider the following possibilities:
Case 1: x, y ∈ [1, 2] with x 6= y. Then

T (x) = x
1
4 , T (y) = y

1
4 , D (Tx, Ty) = 2

(
x

1
4 − y

1
4

)
, D(x, y) = 2(x− y).

On the other hand,

F

[
D (Tx, Ty)

2

]
= ln(x

1
4 − y

1
4 ) + (x

1
4 − y

1
4 ),

F

[
D (x, y)

2

]
= ln(x− y) + (x− y)

and

φ [d (x, y)] =
1

[1 + (x− y)]
.

We have

F

[
D (Tx, Ty)

2

]
+ φ

[
D (x, y)

2

]
− F

[
D (x, y)

2

]

= ln(x
1
4 − y

1
4 )− ln(x− y) + (x

1
4 − y

1
4 )− (x− y) +

1
[1 + (x− y)]

= ln(x
1
4 − y

1
4 )− ln(x− y) + (x

1
4 − y

1
4 )− (x− y) +

1
[1 + (x− y)]

= −ln
(
x

1
4 + y

1
4

)
− ln

(
x

1
2 + y

1
2

)

+ (x
1
4 − y

1
4 )

[
1−

(
x

1
4 + y

1
4

)(
x

1
2 + y

1
2

)]
+

1
[1 + (x− y)]

.

Since x, y ∈ [1, 2],

x
1
4 + y

1
4 ≥ 1 ⇒ −ln

(
x

1
4 + x

1
4

)
≤ 0,

(x
1
4 − y

1
4 )

(
1−

(
x

1
4 + y

1
4

)(
x

1
2 + y

1
2

))
≤ 0

and

−ln
(
x

1
2 + y

1
2

)
− ln

(
x

1
4 + y

1
4

)
+

1

1 +
(
x

1
4 − y

1
4

) ≤ 0.

Thus, for all x, y ∈ [1, 2] with x 6= y, we have

F

[
D (Tx, Ty)

2

]
+ φ

[
D (x, y)

2

]
≤ F

[
D (x, y)

2

]
.

Case 2: x ∈ [1, 2] and y ∈ A. Then

T (x) = x
1
4 , T (y) = 1, D (Tx, Ty) = 2

(
x

1
4 − 1

)
, d(x, y) = 2(x− y).



384 Mohamed Rossafi, Abdelkarim Kari & Jung Rye Lee

On the other hand,

F

[
D (Tx, Ty)

2

]
= ln(x

1
4 − 1) + (x

1
4 − 1),

F

[
D (x, y)

2

]
= ln((x− y)) + (x− y)

and

φ

[
D (x, y)

2

]
=

1
1 + (x− y)

.

We have

F

[
D (x, y)

2

]
− F

[
D (Tx, Ty)

2

]
− φ

[
D (x, y)

2

]

= (x− y)− (x
1
4 − 1) + ln(x− y)− ln(x

1
4 − 1)− 1

[1 + (x− y)]

= ln

[
x− y

(x
1
4 − 1)

]
+ (x− y)− (x

1
4 − 1)− 1

[1 + (x− y)]
.

Since x ∈ [1, 2] and y ∈ A,

(x− y) ≥
(

x− 1
2

)
=

(
x− 1 +

1
2

)
> (x− 1) .

Hence

(x− y) > (x− 1) =
(
x

1
4 − 1

)(
x

1
4 + 1

)(
x

1
2 + 1

)
,

(x− y)−
(
x

1
4 − 1

)
>

(
x

1
4 − 1

) [(
x

1
4 + 1

)(
x

1
2 + 1

)
− 1

]

and
(x− y)(
x

1
4 − 1

) >
(
x

1
4 + 1

)(
x

1
2 + 1

)
.

Then we have

ln

[
x− y

(x
1
4 − 1)

]
> ln

[(
x

1
4 + 1

)(
x

1
2 + 1

)]
= ln

(
x

1
4 + 1

)
+ ln

(
x

1
2 + 1

)
.

Since x ∈ [1.2],

ln
[(

x
1
4 + 1

)]
+ ln

[(
x

1
2 + 1

)]
≥ 1

[1 + (x− y)]
.

Hence, the condition (3.1) is satisfied. Therefore, T has a unique fixed point z = 1.
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Theorem 3.6. Let (X, d) be a complete generalized asymmetric metric space and
T : X → X be a mapping. Suppose that there exist F ∈ = and φ ∈ Φ such that for
all x, y ∈ X with max {d (Tx, Ty) , d (Ty, Tx)} > 0, we have

(3.15) F

[
d (Tx, Ty) + d (Ty, Tx)

2

]
+ φ

(
d (x, y) + d (y, x)

2

)
≤ F [M (x, y)] ,

where

M (x, y) = max
{

d (x, y) + d (y, x)
2

,
d (x, Tx) + d (Tx, x)

2
,
d (y, Ty) + d (Ty, y)

2

}
.

Then T has a unique fixed point.

Proof. Let x0 ∈ X be fixed and define a sequence {xn} by

xn+1 = Txn = Tn+1x0, ∀n ∈ N.

If there exists n0 ∈ N such that d (xn0 , xn0+1) = 0 or d (xn0+1,xn0) = 0, then the
proof is finished.

We can suppose that d (xn, xn+1) > 0 and d (xn+1,xn) > 0 for all n ∈ N. Then
we have

max {d (xn, xn+1) , d (xn+1,xn)} > 0.

Letting x = xn−1 and y = xn in (3.15) for all n ∈ N, we have
(3.16)

F

[
d (xn, xn+1) + d (xn+1,xn)

2

]
+φ

[
d (xn−1, xn) + d (xn+1,xn)

2

]
≤ F [M (xn−1, xn)] ,

where

M(xn−1, xn) =
{

d(xn−1, xn) + d(xn, xn−1)
2

,
d(xn−1, xn) + d(xn, xn−1)

2
,

d(xn, xn+1) + d(xn+1, xn)
2

}

=
{

d (xn−1, xn) + d (xn, xn−1)
2

,
d (xn, xn+1) + d (xn+1, xn)

2

}
.

Now, we set D (xn, xm) = d (xn, xm) + d (xm, xn) . Then

M (xn−1, xn) =
{

D (xn−1, xn)
2

,
D (xn, xn+1)

2

}
.
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Suppose that for some n, M (xn−1, xn) =
{

D(xn,xn+1)
2

}
. Using the continuity of F

and the property of φ, it follows from (3.16) that

F

[
D (xn, xn+1)

2

]
≤ F

[
D (xn, xn+1)

2

]
− φ

[
D (xn−1, xn)

2

]

< F

[
D (xn, xn+1)

2

]
.

This implies that
D (xn, xn+1) < D (xn, xn+1) ,

which is a contradiction. Hence

M (xn−1, xn) =
D (xn−1, xn)

2
.

Therefore,

F

(
D (xn, xn+1)

2

)
< F

(
D (xn−1, xn)

2

)
− φ

(
D (xn−1, xn)

2

)
.

Since F is increasing,

(3.17) D (xn, xn+1) < D (xn−1, xn) .

Repeating this step, we conclude that

F

(
D (xn, xn+1)

2

)
≤

(
F

(
D (xn−1, xn)

2

))
− φ

[
D (xn−1, xn)

2

]

≤ F

(
D (xn−2, xn−1)

2

)
− φ

[
D (xn−1, xn)

2

]
− φ

[
D (xn−2, xn−1)

2

]

≤ ... ≤ F

(
D (x0, x1)

2

)
−

n∑

i=0

φ

[
D (xi, xi+1)

2

]
.

Since lim infα→s+ φ(s) > 0, we have lim infn→∞ φ(D (xn−1, xn)) > 0. From the
definition of the limit, there exist n0 ∈ N and A > 0 such that for all n ≥ n0,
φ(D (xn−1, xn)) > A. Thus

F (D (xn, xn+1)) ≤ F (D (x0, x1))−
n0−1∑

i=0

φ(D (xi, xi+1))−
n∑

i=n0−1

φ(D (xi, xi+1))

≤ F (D (x0, x1))−
n∑

i=n0−1

A

= F (D (x0, x1))− (n− n0)A

for all n ≥ n0. Taking the limit as n →∞ in the above inequality, we get

lim
n→∞F (D (xn, xn+1)) ≤ lim

n→∞ [F (D (x0, x1))− (n− n0)A] ,
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that is, limn→∞ F (D (xn, xn+1)) = −∞. From the condition (ii) of Definition 2.12,
we conclude that

(3.18) lim
n→∞D (xn,xn+1) = 0.

Next, we shall prove that

lim
n→∞ d (xn, xn+2) = 0 and lim

n→∞ d (xn+2, xn) = 0.

We assume that xn 6= xm for all n,m ∈ N with n 6= m. Indeed, suppose that xn = xm

for some n = m + k with k > 0. Then we have xn+1 = Txn = Txm = xm+1.
By (3.17), we have

D (xn, xm+1) < D (xn−1, xn) .

Continuing this process, we can have that

D (xm, xn+1) < D (xm, xm+1) ,

which is a contradiction. Therefore,

max {d (xm, xn) , d (xn, xm)} > 0, ∀n, m ∈ N, n 6= m.

Letting x = xn and y = xn+2, we have

max {d (xn, xn+2) , d (xn+2,xn)} > 0.

Applying (3.15) with x = xn−1 and y = xn+1, we have

F

[
D (xn, xn+2)

2

]
+ φ

(
D (xn−1, xn+1)

2

)
≤ F (M (xn−1, xn+1)) ,

where

M (xn−1, xn+1) = max
{

D (xn−1, xn)
2

,
D (xn−1, xn+1)

2
,
D (xn+1, xn+2)

2

}

= max
{

D (xn−1, xn)
2

,
D (xn−1, xn+1)

2

}
.

Therefore,

F

(
D (xn, xn+2)

2

)
(3.19)

≤ F

(
max

{
D (xn−1, xn)

2
,
D (xn−1, xn+1)

2

})
− φ

(
D (xn−1, xn+1)

2

)
.

Take an = D (xn, xn+2) and bn = D (xn, xn+1) . Since F is increasing, we have

an < max {an−1, bn−1} .

Again by (3.17),
bn ≤ bn−1 ≤ max {an−1, bn−1} .
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Therefore,

max {an, bn} ≤ max {an−1, bn−1} , ∀n ∈ N.

Then the sequence max {an−1, bn−1}n∈N is monotone non-increasing, and so it con-
verges to some β ≥ 0 such that

lim
n→∞max {an, bn} = β.

By (3.18), for β > 0, we have

lim
n→∞ sup an = lim

n→∞ supmax {an, bn} = lim
n→∞max {an, bn} .

Taking the lim supn →∞ in (3.19) and using the properties of F and φ, we obtain

F
(

lim
n→∞ sup an

)
≤ F

(
lim

n→∞ supmax {an−1, bn−1}
)
− lim

n→∞ supφ

(
D (xn−1, xn+1)

2

)

≤ F
(

lim
n→∞ supmax {an−1, bn−1}

)
− lim

n→∞ inf φ

(
D (xn−1, xn+1)

2

)

< F
(

lim
n→∞ supmax {an−1, bn−1}

)
.

Therefore,

F

(
β

2

)
< F

(
β

2

)
.

This is a contradiction. Thus

(3.20) lim
n→∞D (xn+2,xn) = 0.

Next, we shall prove that {xn}n∈N is a Cauchy sequence, i.e., limn,m→∞D (xn,xm) =
0, for all n,m ∈ N. Suppose to the contrary. Then there is an ε > 0 such that for
an integer k there exist two sequences

{
n(k)

}
and

{
m(k)

}
, m(k) > n(k) > k,

such that

D
(
xm(k)

, xn(k)

)
≥ ε, D

(
xm(k)−1

, xn(k)

)
< ε.

Now, using (3.18), (3.20) and the quadrilateral inequality, we find

ε ≤ D
(
xm(k)

, xn(k)

)
≤ D

(
xm(k)

, xm(k)+1

)
+ D

(
xm(k)+1

, xm(k)−1

)
+ D

(
xm(k)−1

, xn(k)

)

≤ D
(
xm(k)

, xm(k)+1

)
+ D

(
xm(k)+1

, xm(k)−1

)
+ ε.

Then

(3.21) lim
k→∞

D
(
xm(k)

, xn(k)

)
= ε.
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Now, by the quadrilateral inequality, we have

D
(
xm(k)+1

, xn(k)+1

)
≤ D

(
xm(k)+1

, xm(k)

)
+ D

(
xm(k)

, xn(k)

)
+ D

(
xn(k)

, xn(k)+1

)
,

D
(
xm(k)

, xn(k)

)
≤ D

(
xm(k)

, xm(k)+1

)
+ D

(
xm(k)+1

, xn(k)+1

)
+ D

(
xn(k)+1

, xn(k)

)
.

Letting k →∞ in the above inequalities, we obtain

(3.22) lim
k→∞

D
(
xm(k)+1

, xn(k)+1

)
= ε.

By (3.22) there exists n0 ∈ N such that

D
(
xm(k)+1

, xn(k)+1

)
= d

(
xm(k)+1

, xn(k)+1

)
+ d

(
xn(k)+1

, xm(k)+1

)
≥ ε

2
, ∀n ≥ n0.

Therefore,

max
{

d
(
xm(k)+1

, xn(k)+1

)
, d

(
xn(k)+1

, xm(k)+1

)}
≥ ε

4
, ∀n ≥ n0.

So

max
{

d
(
Txm(k)

, Txn(k)

)
, d

(
xn(k)

, Txm(k)

)}
≥ ε

4
, ∀n ≥ n0.

Applying (3.15) with x = xm(k)
and y = xn(k)

, we have
(3.23)

F


D

(
xm(k)+1

, xn(k)+1

)

2


 ≤ F

(
M

(
xm(k)

, xn(k)

))
− φ


D

(
xm(k)

, xn(k)

)

2


 ,

where

M
(
xm(k)

, xn(k)

)
= max





D
(
xm(k)

, xn(k)

)

2
,
D

(
xm(k)

, xm(k)+1

)

2
,
D

(
xn(k)

, xn(k)+1

)

2



 .

By (3.18) and (3.21), we have

lim
k→∞

M
(
xm(k)

, xn(k)

)
=

ε

2
.

By letting k →∞ in (3.23) and using the continuity of F and using the property of
φ, we obtain
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F
(ε

2

)
≤ F

(ε

2

)
− lim

k→∞
supφ


D

(
xm(k)

, xn(k)

)

2




≤ F
(ε

2

)
− lim

k→∞
inf φ


D

(
xm(k)

, xn(k)

)

2




< F
(ε

2

)
,

which implies that

ε < ε.

This is s a contradiction. Thus

lim
n,m→∞D (xm, xn) = 0.

Hence

lim
n,m→∞ d (xm, xn) = lim

n,m→∞ d (xn, xm) = 0.

So {xn} is a forward and backward Cauchy sequence in X. By completeness of
(X, d), there exist z, u ∈ X such that

lim
n→∞ d (xn, z) = lim

n→∞ d (u, xn) = 0.

So, from Lemma 2.6, we get z = u.
Now, we show that d (Tz, z) = 0 = d (z, Tz) . Arguing by contradiction, we assume

that

d (Tz, z) > 0 and d (z, Tz) > 0.

Therefore,

max {d (Tz, z) , d (z, Tz)} > 0.

As in the proof of Theorem 3.2, we conclude that

(3.24) lim
n→∞ d (Tz, Txn) = d (Tz, z)

and

(3.25) lim
n→∞ d (Txn, T z) = d (z, Tz) .

By (3.24) and (3.25), there exists q ∈ N such that

max {d (Tz, Txn) , d (Txn, T z)} > 0, ∀ n ≥ q.
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Since T is an F -φ-contraction, we obtain

(3.26) F

(
D (Tz, Txn)

2

)
≤ F [θ (M (z, xn))]− φ

(
D (z, xn)

2

)
, ∀n ≥ q,

where

M (z, xn) = max
{

D (z, xn)
2

D (z, Tz)
2

,
D (xn, Txn)

2

}
.

Thus

(3.27) lim
n→∞M (z, xn) = max

{
D (z, xn)

2
D (z, Tz)

2
,
D (xn, Txn)

2

}
=

D (z, Tz)
2

.

By letting n →∞ in (3.26), using (3.24), (3.25), (3.27) and property of φ, we obtain

F

(
D (Tz, z)

2

)
≤ F

(
D (Tz, z)

2

)
− lim

n→∞ supφ

(
D (z, xn)

2

)

≤ F

(
D (Tz, z)

2

)
− lim

n→∞ inf φ

(
D (z, xn)

2

)

< F

(
D (Tz, z)

2

)
.

Therefore,

D (z, Tz) < D (z, Tz) ,

which is a contradiction. Thus z = Tz. So T has a fixed point.
Let z, u ∈ Fix(T ) with z 6= u. Then

d (Tz, Tu) = d (z, u) > 0

and

d (Tu, Tz) = d (u, z) > 0.

Therefore,

max {d (Tz, Tu) , d (Tu, Tz)} > 0.

From assumption of the theorem, we get

F

(
D (Tz, Tu)

2

)
= F

(
D (z, u)

2

)
≤ F (M (z, u))− φ (M (z, u)) ,

where

M (z, u) = max
{

D (z, u)
2

,
D (z, Tz)

2
,
D (u, Tu)

2

}
=

D (z, u)
2

.

Therefore, we have

F

(
D (Tz, Tu)

2

)
= F

(
D (z, u)

2

)
≤ F (M (z, u))− φ (D (z, u)) < F

(
D (z, u)

2

)
,

which implies that D (z, u) < D (z, u). This is a contradiction. Therefore u = z. ¤
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It follows from Theorem 3.6 that we obtain fixed point theorems for F -φ-Reich-
type contraction and F -φ-Kannan-type contraction.

Theorem 3.7. Let (X, d) be a complete generalized asymmetric space and T : X →
X be a θ-φ-Kannan-type contraction. Then T has a unique fixed point.

Proof. Since T is a (φ, F −−Kannan-type contraction, there exist F ∈ = and φ ∈ Φ
such that

F

[
d (Tx, Ty) + d (Ty, Tx)

2

]
+ φ

(
d (x, y) + d (y, x)

2

)

= F

[
D (Tx, Ty)

2

]
+ φ

(
D (x, y)

2

)

≤ F

(
D (Tx, x) + D (Ty, y)

4

)

≤ F

(
max

{
D (x, Tx)

2
,
D (y, Ty)

2

})

≤ F

(
max

{
D (x, y)

2
,
D (Tx, x)

2
,
D (y, Ty)

2

})
.

Therefore, T is a (φ, F )-contraction. As in the proof of Theorem 3.6, we conclude
that T has a unique fixed point. ¤

Theorem 3.8. Let (X, d) be a complete generalized asymmetric space and T : X →
X be a (φ, F )-Reich-type contraction. Then T has a unique fixed point.

Proof. Since T is a (φ, F )-Reich-type contraction, there exist F ∈ = and φ ∈ Φ such
that

F

[
d (Tx, Ty) + d (Ty, Tx)

2

]
+ φ

(
d (x, y) + d (y, x)

2

)

= F

[
D (Tx, Ty)

2

]
+ φ

(
D (x, y)

2

)

≤ F

(
D (x, y) + D (Tx, x) + D (Ty, y)

6

)

≤ F

(
max

{
D (x, y)

2
,
D (Tx, x)

2
,
D (y, Ty)

2

})
.

Therefore, T is a (φ, F )-contraction. As in the proof of Theorem 3.6, we conclude
that T has a unique fixed point. ¤

Corollary 3.9. Let (X, d) be a complete metric space and T : X → X be a Kan-
nan type mapping, i.e., there exists α ∈ ]

0, 1
2

[
such that for all x, y ∈ X with
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max {d (Tx, Ty) , d (Ty,Tx)} > 0,

d (Tx, Ty) + d (Ty, Tx)
2

≤ α

[
d (Tx, x) + d (x, Tx) + d (Ty, y) + d (y, Ty)

2

]
.

Then T has a unique fixed point.

Proof. Let F (t) = ln(t) for all t ∈ ]0,+∞[, and φ (t) = ln( 1
α). We prove that T is a

(φ, F )-Kannan-type contraction. Indeed,

F

(
d (Tx, Ty) + d (Ty, Tx)

2

)

= ln

(
d (Tx, Ty) + d (Ty, Tx)

2

)

≤ ln

(
d (Tx, x) + d (x, Tx) + d (Ty, y) + d (y, Ty)

4

)
+ ln (α) .

Thus

ln

(
d (Tx, Ty) + d (Ty, Tx)

2

)
+ ln

(
1
α

)

≤ ln

(
d (Tx, x) + d (x, Tx) + d (Ty, y) + d (y, Ty)

4

)
.

Therefore, as in the proof of Theorem 3.7, T has a unique fixed point x ∈ X. ¤

Corollary 3.10. Let (X, d) be a complete metric space and T : X → X be a
Reich type mapping, i.e., there exists λ ∈ ]

0, 1
3

[
such that for all x, y ∈ X with

max {d (Tx, Ty) , d (Ty,Tx)} > 0, we have

d (Tx, Ty) + d (Ty, Tx)
2

≤ λ

[
d (x, y) + (d (y, x) + d (Tx, x) + d (x, Tx) + d (Ty, y) + d (y, Ty)

2

]
.

Then T has a unique fixed point.

Proof. Let F (t) = ln(t) for all t ∈ ]0,+∞[, and φ (t) = ln( 1
λ). We prove that

T is a (φ, F )- Kannan-type contraction. Indeed,

F

(
d (Tx, Ty) + d (Ty, Tx)

2

)
= ln

(
d (Tx, Ty) + d (Ty, Tx)

2

)

≤ ln

(
d (x, y) + d (y, x) d (Tx, x) + d (x, Tx) + d (Ty, y) + d (y, Ty)

6

)
+ ln (λ) .
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Thus

ln

(
d (Tx, Ty) + d (Ty, Tx)

2

)
+ ln

(
1
λ

)

≤ ln

(
d (x, y) + d (y, x) d (Tx, x) + d (x, Tx) + d (Ty, y) + d (y, Ty)

6

)
+ ln (λ) .

Therefore, as in the proof of Theorem 3.8, T has a unique fixed point x ∈ X. ¤

Example 3.11. Let X = A ∪B, where A = {0, 1
3 , 1

4 , 1
5} and B =

[
3
4 , 2

]
.

Define d : X ×X → [0,+∞[ as follows:
{

d(x, y) = d(y, x), ∀x, y ∈ B;

d(x, y) = 0 ⇔ y = x, ∀x, y ∈ X

and 



d

(
1
3
,
1
4

)
= d

(
1
5
, 0

)
= 0.3

d

(
1
3
,
1
5

)
= d

(
1
4
, 0

)
= 0.21

d

(
1
5
,
1
3

)
= d

(
0,

1
4

)
= 0.34

d

(
1
3
, 0

)
= d

(
1
3
, 0

)
= 0.6

d (x, y) = |x− y| otherwise.

Then (X, d) is a generalized asymmetric metric space. However, we have the follow-
ing:

1) (X, d) is not a metric space, since d
(

1
3 , 0

)
= 0.6 > 0.51 = d

(
1
3 , 1

4

)
+ d

(
1
4 , 0

)
.

2) (X, d) is not a generalized metric space, since d
(
0, 1

4

)
= 0.34 6= d

(
1
4 , 0

)
=

0.21.

Define a mapping T : X → X by

T (x) =





√
x if x ∈

[
3
4
, 2

]

1 if x ∈ A.

Then T (x) ∈ [
3
4 , 2

]
. Let F (t) = lnt for all t ∈ ]0, +∞[ , φ(t) = 1

2+t . It is obvious
that F ∈ = and φ ∈ Φ.

Consider the following possibilities:
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Case 1: x, y ∈ [
3
4 , 2

]
with x 6= y. Assume that x > y. Then

D(Tx, Ty) = d(Tx, Ty) + d(Ty, Tx)

= |√x−√y|+ |√y −√x|
= 2

(√
x−√y

)

and

D(x, y) = d(x, y) + d(y, x)

= |x− y|+ |y − x|
= 2 (x− y) .

Therefore,

F

(
D(Tx, Ty)

2

)
= ln

(√
x−√y

)

and

φ

(
D(x, y)

2

)
=

[
1

2 + (x− y)

]
.

On the other hand,

F

(
D(Tx, Ty)

2

)
+ φ

(
D(x, y)

2

)
− F

(
D(x, y)

2

)

= ln
(√

x−√y
)

+
[

1
2 + (x− y)

]
− ln (x− y) .

= ln

(√
x−√y

x− y

)
+

[
1

2 + (x− y)

]

= ln

(
1√

x +
√

y

)
+

[
1

2 + (x− y)

]

= −ln
(√

x +
√

y
)

+
[

1
2 + (x− y)

]
.

Since x, y ∈ [
3
4 , 2

]
, we have

−ln
(√

x +
√

y
) ≤ −ln(

√
3)

and [
1

2 + (x− y)

]
≤ ln(

√
3).

Thus

F

(
D(Tx, Ty)

2

)
+ φ

(
D(x, y)

2

)
≤ F

(
D(x, y)

2

)
≤ F (M(x, y)) .
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Case 2: x ∈ [
3
4 , 2

]
, y ∈ A or y ∈ [

3
4 , 2

]
, x ∈ A.

Then T (x) =
√

x, T (y) = 1 and so d(Tx, Ty) = (|√x− 1|).
In this case, consider two possibilities:
i) x > 1 : Then

√
x > 1. Thus

D(Tx, Ty) = 2
(√

x− 1
)
.

So we have

F

(
D(Tx, Ty)

2

)
= ln

(√
x− 1

)

and

M(x, y) = max
{

D (x, y)
2

,
D (x, Tx)

2
,
D (y, Ty)

2

}

≥ D (x, y)
2

≥ D
(
x, 1

3

)

2

= x− 1
3

≥ x− 1.

On the other hand,

F

(
D(Tx, Ty)

2

)
+ φ

(
D(x, y)

2

)
− F

(
D(x, y)

2

)

= ln
(√

x− 1
)

+
[

1
2 + (x− y)

]
− ln (x− y)

≤ ln
(√

x− 1
)

+
[

1
2 + (x− y)

]
− ln (x− 1)

= ln

(√
x− 1

x− 1

)
+

[
1

2 + (x− y)

]

= ln

(
1√

x + 1

)
+

[
1

2 + (x− y)

]

= −ln
(√

x + 1
)

+
[

1
2 + (x− y)

]
.

Since x ∈ ]1, 2], we have

−ln
(√

x + 1
) ≤ −ln (2)

and [
1

2 + (x− y)

]
≤ 1

2
≤ ln (2) .
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Thus

F

(
D(Tx, Ty)

2

)
+ φ

(
D(x, y)

2

)
≤ F

(
D(x, y)

2

)
≤ F (M(x, y)) .

ii) x < 1 : Then
√

x < 1. Thus

D(Tx, Ty) = 2
(
1−√x

)
.

So we have

F

(
D(Tx, Ty)

2

)
= ln

(
1−√x

)

and

M(x, y) = max
{

D (x, y)
2

,
D (x, Tx)

2
,
D (y, Ty)

2

}

≥ D (y, Ty)
2

= 1− y

≥ 1− 1
3

=
2
3

and

F

(
2
3

)
= ln

(
2
3

)
.

On the other hand,

F

(
D(Tx, Ty)

2

)
+ φ

(
D(x, y)

2

)
− F (M(x, y))

= ln
(
1−√x

)
+

[
1

2 + (x− y)

]
− F (M(x, y))

≤ ln
(
1−√x

)
+

[
1

2 + (x− y)

]
− ln

(
2
3

)

= ln

(
3
2

(
1−√x

))
+

[
1

2 + (x− y)

]
.

Since x ∈ [
3
4 , 1

[
,

ln

(
3
2

(
1−√x

))
+

[
1

2 + (x− y)

]
≤ 0.

This implies that

F

(
D(Tx, Ty)

2

)
+ φ

(
D(x, y)

2

)
≤ F

(
D(x, y)

2

)
≤ F (M(x, y)) .

Hence T satisfies the assumption of the theorem and z = 1 is the unique fixed point
of T .
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