DOI QR코드

DOI QR Code

FIXED AND PERIODIC POINT THEOREMS IN QUASI-METRIC SPACES

  • Received : 2010.10.19
  • Accepted : 2011.03.22
  • Published : 2011.05.30

Abstract

In this paper, we introduce the concept of generalized weak q-contractivity for multivalued maps defined on quasi-metric spaces. A new fixed point theorem for these maps is established. The convergene of iterate schem of the form $x_n+1\;{\in}\;Fx_n$ is investigated. And a new periodic point theorem for weakly q-contractive self maps of quasi-metric spaces is proved.

Keywords

References

  1. Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces in:I. Gohberg and Yu Lyubich(Eds.), New Results in OperatorTheory, in: Advances and Appl., Vol. 98, Birkhauser, Basel (1997), 7-22.
  2. S. Al-Homidan, Q.H. Ansari and J.C. Yao, Some generalizations of Ekeland-type varia- tional principle with applications to equilibrium problems and fixed point theory, Nonlinear Analysis 69(2008), 126-139. https://doi.org/10.1016/j.na.2007.05.004
  3. J.S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl. 248(2003), 690-697.
  4. I. Beg and M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed point theory and Applications (2006), 1-7.
  5. G. Berthiaume, On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66(1977), 335-343. https://doi.org/10.1090/S0002-9939-1977-0482620-9
  6. D.W. Boyd and J.S. Wong, On nonlinear contractions, Proc. Amer. Soc. 20(1969), 458-464. https://doi.org/10.1090/S0002-9939-1969-0239559-9
  7. G.S. Jeong, B.E. Rhoades, Maps for which F(T) = F($T^{n}$), Fixed Point Theory Appl. 6(2006), 72-105.
  8. H.P.A. Kunzi, Nonsymmetric topology, Bolyai Soc. Math. Studies 4, Topology, Szekszard(1993), Hungary, Budapest (1995), 303-338.
  9. H.P.A. Kunzi and C. Ryser, The Bourbaki quasi-uniformity, Topology Proc. 20(1995), 161-183.
  10. S. Reich, Some fixed point problems, Atti. Accad. Naz. Lincei 57(1974), 194-198.
  11. I.L. Reilly, P. V. Subrahmanyam and M. K. Vamanamurthy, Cauchy sequences in quasipsedo-metric spaces, Monatsh. Math. 93(1982), 127-140. https://doi.org/10.1007/BF01301400
  12. B.E. Rhoades, Some Theorems on weakly contractive maps, Nonlinear Analysis 47(2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1
  13. S. Romaguera, Left K-completeness in quasi-metric spaces, Math. Nachr. 157(1992), 15- 23.
  14. M. Schellekens, Complexity spaces revisited, Extended Abstract, 8th Prague Topological Symp. 1996, 337-348.