DOI QR코드

DOI QR Code

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey (Section of Mathematics IT Department University of Technology and Applied Sciences-Shinas) ;
  • Young Jin Suh (Department of Mathematics and RIRCM Kyungpook National University)
  • Received : 2022.02.03
  • Accepted : 2022.06.28
  • Published : 2023.03.01

Abstract

Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.

Keywords

Acknowledgement

The presented authors would like to express their sincere gratitude to the reviewer for his/her carefully reading and valuable comments to improve our paper. By virtue of his/her unmatched efforts, we could make our paper better than the first one. Moreover, we want to give our gratitude to the Editor for providing his/her valuable suggestions.

References

  1. P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141 (2004), 157-183. https://doi.org/10.1007/BF02772217
  2. P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geom. Appl. 26 (2008), no. 6, 656-666. https://doi.org/10.1016/j.difgeo.2008.04.014
  3. P. Alegre and A. Carriazo, Generalized Sasakian space forms and conformal changes of the metric, Results Math. 59 (2011), no. 3-4, 485-493. https://doi.org/10.1007/s00025-011-0115-z
  4. P. Alegre, A. Carriazo, C. Ozgur, and S. Sular, New examples of generalized Sasakianspace-forms, Proc. Est. Acad. Sci. 60 (2011), 251-257. https://doi.org/10.3176/proc.2011.4.05
  5. J. Berndt, Real hypersurfaces with constant principal curvatures in complex space forms, Proceedings of the Tenth International Workshop on Differential Geometry, 1-12, Kyungpook Nat. Univ., Taegu, 2006.
  6. A. M. Blaga, and B.-Y. Chen, Harmonic forms and generalized solitons, arXiv: 2107.04223v1 [math.DG], 2021.
  7. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
  8. D. E. Blair and J. N. Patnaik, Contact manifolds with characteristic vector field annihilated by the curvature, Bull. Inst. Math. Acad. Sinica 9 (1981), no. 4, 533-545.
  9. W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734. https://doi.org/10.2307/1970165
  10. J.-P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compos. Math. 30 (1975), 1-41.
  11. J.-P. Bourguignon, Ricci curvature and Einstein metrics, in Global differential geometry and global analysis (Berlin, 1979), 42-63, Lecture Notes in Math., 838, Springer, Berlin, 1981.
  12. A. Carriazo, A survey on semi-Riemannian generalized Sasakian-space-forms, in Recent advances in the geometry of submanifolds-dedicated to the memory of Franki Dillen (1963-2013), 17-25, Contemp. Math., 674, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/674
  13. A. Carriazo, V. Martin Molina, and M. M. Tripathi, Generalized (κ, µ)-space forms, Mediterr. J. Math. 10 (2013), no. 1, 475-496. https://doi.org/10.1007/s00009-012-0196-2
  14. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The RicciBourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370. https://doi.org/10.2140/pjm.2017.287.337
  15. G. Catino, C. Mantegazza, and L. Mazzieri, On the global structure of conformal gradient solitons with nonnegative Ricci tensor, Commun. Contemp. Math. 14 (2012), no. 6, 1250045, 12 pp. https://doi.org/10.1142/S0219199712500459
  16. G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
  17. P. Cernea and D. Guan, Killing fields generated by multiple solutions to the Fischer-Marsden equation, Internat. J. Math. 26 (2015), no. 4, 1540006, 18 pp. https://doi.org/10.1142/S0129167X15400066
  18. S. K. Chaubey, Characterization of perfect fluid spacetimes admitting gradient η-Ricci and gradient Einstein solitons, J. Geom. Phys. 162 (2021), Paper No. 104069, 10 pp. https://doi.org/10.1016/j.geomphys.2020.104069
  19. S. K. Chaubey, U. C. De, and Y. J. Suh, Kenmotsu manifolds satisfying the Fischer-Marsden equation, J. Korean Math. Soc. 58 (2021), no. 3, 597-607. https://doi.org/10.4134/JKMS.j190602
  20. S. K. Chaubey, M. D. Siddiqi, and D. G. Prakasha, Invariant submanifolds of hyperbolic Sasakian manifolds and η-Ricci-Bourguignon solitons, Filomat 36 (2022), no. 2, 409-421. https://doi.org/10.2298/fil2202409c
  21. S. K. Chaubey, M. D. Siddiqi and S. Yadav, Almost η-Ricci-Bourguignon solitons on submersions from Riemannian submersions, Balkan J. Math. Appl. 27 (2022), no.1, 24-38.
  22. S. K. Chaubey and S. K. Yadav, W-semisymmetric generalized Sasakian-space-forms, Adv. Pure Appl. Math. 10 (2019), no. 4, 427-436. https://doi.org/10.1515/apam2018-0032
  23. J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137-189. https://doi.org/10.1007/PL00005533
  24. U. C. De, S. K. Chaubey, and Y. J. Suh, A note on almost co-Kahler manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 10, 2050153, 14 pp. https://doi.org/10.1142/S0219887820501534
  25. U. C. De, S. K. Chaubey, and Y. J. Suh, Gradient Yamabe and gradient m-quasi Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18 (2021), no. 3, Paper No. 80, 14 pp. https://doi.org/10.1007/s00009-021-01720-w
  26. S. Dwivedi, Some results on Ricci-Bourguignon solitons and almost solitons, Canad. Math. Bull. 64 (2021), no. 3, 591-604. https://doi.org/10.4153/S0008439520000673
  27. M. Falcitelli, Locally conformal C6-manifolds and generalized Sasakian-space-forms, Mediterr. J. Math. 7 (2010), no. 1, 19-36. https://doi.org/10.1007/s00009-010-0024-5
  28. A. E. Fischer, An introduction to conformal Ricci flow, Classical Quantum Gravity 21 (2004), no. 3, S171-S218. https://doi.org/10.1088/0264-9381/21/3/011
  29. A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484. https://doi.org/10.1090/S0002-9904-1974-13457-9
  30. A. E. Fischer and J. A. Wolf, The structure of compact Ricci-flat Riemannian manifolds, J. Differential Geometry 10 (1975), 277-288. http://projecteuclid.org/euclid.jdg/1214432794
  31. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922 https://doi.org/10.4310/jdg/1214436922
  32. P. T. Ho, On the Ricci-Bourguignon flow, Internat. J. Math. 31 (2020), no. 6, 2050044, 40 pp. https://doi.org/10.1142/S0129167X20500445
  33. M. Kanai, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math. 6 (1983), no. 1, 143-151. https://doi.org/10.3836/tjm/1270214332
  34. U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.
  35. U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat. 26 (2006), no. 1, 55-67.
  36. O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 (1982), no. 4, 665-675. https://doi.org/10.2969/jmsj/03440665
  37. J. Lafontaine, Sur la geometrie d'une generalisation de l'equation differentielle d'Obata, J. Math. Pures Appl. (9) 62 (1983), no. 1, 63-72.
  38. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340. https://doi.org/10.2969/jmsj/01430333
  39. D. S. Patra and A. Ghosh, The Fischer-Marsden conjecture and contact geometry, Period. Math. Hungar. 76 (2018), no. 2, 207-216. https://doi.org/10.1007/s10998-017-0220-1
  40. D. G. Prakasha, P. Veeresha, and Venkatesha, The Fischer-Marsden conjecture on non-Kenmotsu (κ, µ)'-almost Kenmotsu manifolds, J. Geom. 110 (2019), no. 1, Paper No.1, 9 pp. https://doi.org/10.1007/s00022-018-0457-8
  41. S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tohoku Math. J. (2) 12 (1960), 459-476. https://doi.org/10.2748/tmj/1178244407
  42. Y. Shen, A note on Fischer-Marsden's conjecture, Proc. Amer. Math. Soc. 125 (1997), no. 3, 901-905. https://doi.org/10.1090/S0002-9939-97-03635-6
  43. Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), no. 1, 27-37. https://doi.org/10.21099/tkbjm/1496161316
  44. S. Sular and C. Ozgur, Contact CR-warped product submanifolds in generalized Sasakian space forms, Turkish J. Math. 36 (2012), no. 3, 485-497. https://doi.org/10.1007/s13369-011-0045-9