Acknowledgement
The presented authors would like to express their sincere gratitude to the reviewer for his/her carefully reading and valuable comments to improve our paper. By virtue of his/her unmatched efforts, we could make our paper better than the first one. Moreover, we want to give our gratitude to the Editor for providing his/her valuable suggestions.
References
- P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141 (2004), 157-183. https://doi.org/10.1007/BF02772217
- P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geom. Appl. 26 (2008), no. 6, 656-666. https://doi.org/10.1016/j.difgeo.2008.04.014
- P. Alegre and A. Carriazo, Generalized Sasakian space forms and conformal changes of the metric, Results Math. 59 (2011), no. 3-4, 485-493. https://doi.org/10.1007/s00025-011-0115-z
- P. Alegre, A. Carriazo, C. Ozgur, and S. Sular, New examples of generalized Sasakianspace-forms, Proc. Est. Acad. Sci. 60 (2011), 251-257. https://doi.org/10.3176/proc.2011.4.05
- J. Berndt, Real hypersurfaces with constant principal curvatures in complex space forms, Proceedings of the Tenth International Workshop on Differential Geometry, 1-12, Kyungpook Nat. Univ., Taegu, 2006.
- A. M. Blaga, and B.-Y. Chen, Harmonic forms and generalized solitons, arXiv: 2107.04223v1 [math.DG], 2021.
- D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
- D. E. Blair and J. N. Patnaik, Contact manifolds with characteristic vector field annihilated by the curvature, Bull. Inst. Math. Acad. Sinica 9 (1981), no. 4, 533-545.
- W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734. https://doi.org/10.2307/1970165
- J.-P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compos. Math. 30 (1975), 1-41.
- J.-P. Bourguignon, Ricci curvature and Einstein metrics, in Global differential geometry and global analysis (Berlin, 1979), 42-63, Lecture Notes in Math., 838, Springer, Berlin, 1981.
- A. Carriazo, A survey on semi-Riemannian generalized Sasakian-space-forms, in Recent advances in the geometry of submanifolds-dedicated to the memory of Franki Dillen (1963-2013), 17-25, Contemp. Math., 674, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/674
- A. Carriazo, V. Martin Molina, and M. M. Tripathi, Generalized (κ, µ)-space forms, Mediterr. J. Math. 10 (2013), no. 1, 475-496. https://doi.org/10.1007/s00009-012-0196-2
- G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The RicciBourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370. https://doi.org/10.2140/pjm.2017.287.337
- G. Catino, C. Mantegazza, and L. Mazzieri, On the global structure of conformal gradient solitons with nonnegative Ricci tensor, Commun. Contemp. Math. 14 (2012), no. 6, 1250045, 12 pp. https://doi.org/10.1142/S0219199712500459
- G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
- P. Cernea and D. Guan, Killing fields generated by multiple solutions to the Fischer-Marsden equation, Internat. J. Math. 26 (2015), no. 4, 1540006, 18 pp. https://doi.org/10.1142/S0129167X15400066
- S. K. Chaubey, Characterization of perfect fluid spacetimes admitting gradient η-Ricci and gradient Einstein solitons, J. Geom. Phys. 162 (2021), Paper No. 104069, 10 pp. https://doi.org/10.1016/j.geomphys.2020.104069
- S. K. Chaubey, U. C. De, and Y. J. Suh, Kenmotsu manifolds satisfying the Fischer-Marsden equation, J. Korean Math. Soc. 58 (2021), no. 3, 597-607. https://doi.org/10.4134/JKMS.j190602
- S. K. Chaubey, M. D. Siddiqi, and D. G. Prakasha, Invariant submanifolds of hyperbolic Sasakian manifolds and η-Ricci-Bourguignon solitons, Filomat 36 (2022), no. 2, 409-421. https://doi.org/10.2298/fil2202409c
- S. K. Chaubey, M. D. Siddiqi and S. Yadav, Almost η-Ricci-Bourguignon solitons on submersions from Riemannian submersions, Balkan J. Math. Appl. 27 (2022), no.1, 24-38.
- S. K. Chaubey and S. K. Yadav, W-semisymmetric generalized Sasakian-space-forms, Adv. Pure Appl. Math. 10 (2019), no. 4, 427-436. https://doi.org/10.1515/apam2018-0032
- J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137-189. https://doi.org/10.1007/PL00005533
- U. C. De, S. K. Chaubey, and Y. J. Suh, A note on almost co-Kahler manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 10, 2050153, 14 pp. https://doi.org/10.1142/S0219887820501534
- U. C. De, S. K. Chaubey, and Y. J. Suh, Gradient Yamabe and gradient m-quasi Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18 (2021), no. 3, Paper No. 80, 14 pp. https://doi.org/10.1007/s00009-021-01720-w
- S. Dwivedi, Some results on Ricci-Bourguignon solitons and almost solitons, Canad. Math. Bull. 64 (2021), no. 3, 591-604. https://doi.org/10.4153/S0008439520000673
- M. Falcitelli, Locally conformal C6-manifolds and generalized Sasakian-space-forms, Mediterr. J. Math. 7 (2010), no. 1, 19-36. https://doi.org/10.1007/s00009-010-0024-5
- A. E. Fischer, An introduction to conformal Ricci flow, Classical Quantum Gravity 21 (2004), no. 3, S171-S218. https://doi.org/10.1088/0264-9381/21/3/011
- A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484. https://doi.org/10.1090/S0002-9904-1974-13457-9
- A. E. Fischer and J. A. Wolf, The structure of compact Ricci-flat Riemannian manifolds, J. Differential Geometry 10 (1975), 277-288. http://projecteuclid.org/euclid.jdg/1214432794
- R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922 https://doi.org/10.4310/jdg/1214436922
- P. T. Ho, On the Ricci-Bourguignon flow, Internat. J. Math. 31 (2020), no. 6, 2050044, 40 pp. https://doi.org/10.1142/S0129167X20500445
- M. Kanai, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math. 6 (1983), no. 1, 143-151. https://doi.org/10.3836/tjm/1270214332
- U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.
- U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat. 26 (2006), no. 1, 55-67.
- O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 (1982), no. 4, 665-675. https://doi.org/10.2969/jmsj/03440665
- J. Lafontaine, Sur la geometrie d'une generalisation de l'equation differentielle d'Obata, J. Math. Pures Appl. (9) 62 (1983), no. 1, 63-72.
- M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340. https://doi.org/10.2969/jmsj/01430333
- D. S. Patra and A. Ghosh, The Fischer-Marsden conjecture and contact geometry, Period. Math. Hungar. 76 (2018), no. 2, 207-216. https://doi.org/10.1007/s10998-017-0220-1
- D. G. Prakasha, P. Veeresha, and Venkatesha, The Fischer-Marsden conjecture on non-Kenmotsu (κ, µ)'-almost Kenmotsu manifolds, J. Geom. 110 (2019), no. 1, Paper No.1, 9 pp. https://doi.org/10.1007/s00022-018-0457-8
- S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tohoku Math. J. (2) 12 (1960), 459-476. https://doi.org/10.2748/tmj/1178244407
- Y. Shen, A note on Fischer-Marsden's conjecture, Proc. Amer. Math. Soc. 125 (1997), no. 3, 901-905. https://doi.org/10.1090/S0002-9939-97-03635-6
- Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), no. 1, 27-37. https://doi.org/10.21099/tkbjm/1496161316
- S. Sular and C. Ozgur, Contact CR-warped product submanifolds in generalized Sasakian space forms, Turkish J. Math. 36 (2012), no. 3, 485-497. https://doi.org/10.1007/s13369-011-0045-9