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RICCI-BOURGUIGNON SOLITONS AND

FISCHER-MARSDEN CONJECTURE ON

GENERALIZED SASAKIAN-SPACE-FORMS

WITH β-KENMOTSU STRUCTURE

Sudhakar Kumar Chaubey and Young Jin Suh

Abstract. Our aim is to study the properties of Fischer-Marsden conjec-

ture and Ricci-Bourguignon solitons within the framework of generalized

Sasakian-space-forms with β-Kenmotsu structure. It is proven that a
(2n + 1)-dimensional generalized Sasakian-space-form with β-Kenmotsu

structure satisfying the Fischer-Marsden equation is a conformal gradi-

ent soliton. Also, it is shown that a generalized Sasakian-space-form with
β-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is

either Ψ\Tk ×M2n+1−k or gradient η-Yamabe soliton.

1. Introduction

The contact geometry plays a crucial role in science, technology and med-
ical science. It has broad applications in physics, likes quantization, control
theory, geometric optics, thermodynamics, classical mechanics and to the in-
tegrable systems. Due to its wide applications in different era, it becomes the
center of attraction for researchers. In 1958, Boothby and Wang [9] studied
the odd dimensional differentiable manifolds endowed with contact and almost
contact metric structures from topological point of view, although the same
manifolds have been studied by Sasaki using tensor calculus [41]. They called
such manifolds as the contact metric manifolds. Since then, many researchers
have studied the properties (geometrically and physically) of contact metric
manifolds.

Motivated by the different space-forms, likes real space-forms, Sasakian-
space-forms, Kenmotsu space-forms and cosymplectic space-forms, Alegre,
Blair and Carriazo [1] defined a new space-form, which is the generalization
of above said space-forms, called as a generalized Sasakian-space-form. That
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is, a (2n + 1)-dimensional almost contact metric manifold M with the global
contact form η (η∧ (dη)n ̸= 0 ), the structure tensor ϕ and the unit vector field
ξ satisfying the following curvature identity

R(U, V )Z = f1{g(V,Z)U − g(U,Z)V }+ f2{g(U, ϕZ)ϕV
− g(V, ϕZ)ϕU + 2g(U, ϕV )ϕZ}+ f3{η(U)η(Z)V

− η(V )η(Z)U + η(V )g(U,Z)ξ − η(U)g(V,Z)ξ}(1.1)

for all U, V, Z ∈ X(M), is known as a generalized Sasakian-space-form of di-
mension (2n+ 1), where g is the Riemannian metric and f1, f2 and f3 are the
smooth functions on M . Here R and X(M) denote the curvature tensor with
respect to the Levi-Civita connection ∇ and the collection of all smooth vector
fields of M, respectively. Throughout the paper, we represent M(f1, f2, f3)
as a generalized Sasakian-space-form. Particularly, if we choose f1 = c+3

4 ,

f2 = f3 = c−1
4 and f1 = c−3

4 , f2 = f3 = c+1
4 , then the generalized Sasakian-

space-form becomes Sasakian-space-form and Kenmotsu-space-form, respec-
tively. It is observed that the smooth function f2 vanishes on M(f1, f2, f3) if
and only if the manifold is conformally flat [35]. The properties ofM(f1, f2, f3)
in different contexts have been studied by several geometers but few are ([2–4],
[12], [13], [22], [27], [44]).

LetM denote a Riemannian manifold of dimensionm and g be the associated
Riemannian metric ofM . If g and g∗ represent the collection of all Riemannian
metrics of unit volume and the (0, 2)-type symmetric bilinear tensor on M ,
respectively, then the linearization of scalar curvature Lgg

∗ is given by

Lgg
∗ +△g(trgg

∗) + g(g∗, Sg) = div(div(g∗)),

where △g and S, respectively, denote the negative Laplacian of Riemannian
metric g and non-zero Ricci tensor of M . Here ‘tr’ and ‘div’ stand for trace
and divergence. Throughout the manuscript, we assume that S ̸= 0. If we
denote the formal L2-adjoint of linearized scalar curvature operator Lg by L∗

g,
then it can be defined as

(1.2) L∗
g(λ) + λSg + (△gλ)g = Hessgλ,

where Hessg is the Hessian operator corresponding to the Riemannian metric
g and it is defined as Hessgλ(U, V ) = g(∇UDλ, V ), ∀ U, V ∈ X(M) and λ is
a smooth function on M . Here D denotes the gradient operator of g satisfies
g(U,Dλ) = U(λ) for all U ∈ X(M). We call the equation L∗

g(λ) = 0 as
the Fischer-Marsden equation and the doublet (g, λ) for which L∗

g(λ) = 0 on
M is known as the solution of Fischer-Marsden equation. In particular, for
λ = 0 we get the trivial solution of L∗

g(λ) = 0. This manuscript deals with
the study of non-trivial solution of L∗

g(λ) = 0. Bourguignon [10] and Fischer
and Marsden [29] considered the complete Riemannian manifolds M satisfying
equation L∗

g(λ) = 0 and proved that if (g, λ) is the non-trivial solution of
L∗
g(λ) = 0, then M possesses the constant scalar curvature of g. Corvino [23]

showed that the doublet (g, λ) is the non-trivial solution of L∗
g(λ) = 0 on a
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compact Riemannian manifold M of dimensional n if and only if the warped
product metric g∗ = g−λ2dt2 is Einstein. We also recall the following Fischer-
Marsden conjecture [29] as:

“A compact Riemannian manifold that admits a non-trivial solution of the
equation L∗

g(λ) = 0 is necessarily an Einstein manifold.”
A non-trivial counterexample of the Fischer-Marsden conjecture has been

given by Kobayashi in [36]. In [37], Lafontain studied the same conjecture
on conformally flat compact Riemannian manifolds. Cernea and Guan [17]
proved that if an n-dimensional closed homogeneous Riemannian manifold M
satisfies the equation L∗

g(λ) = 0 with non-trivial solution (g, λ), then M is
locally isometric to the product space Sm × N , where Sm and N denote the
Euclidean sphere and the Einstein manifold, respectively. Shen [42], in 1997,
studied the properties of Fischer-Marsden conjecture and showed that a three
dimensional closed manifold with the positive constant scalar curvature satis-
fying the Fischer-Marsden conjecture possesses a totally geodesic 2-sphere. In
this series, Patra and Ghosh [39], in 2017, proved that if the K-contact and
the (κ, µ)-contact metric manifolds of dimension (2n+ 1) satisfy the equation
L∗
g(λ) = 0 with the non-trivial solution (g, λ), then the manifolds are Einstein

and locally isometric to the unit sphere S2n+1, respectively. Prakasha, Veeresha
and Venkatesha [40] showed that a (κ, µ)′-almost Kenmotsu manifold (M, g) of
dimension (2n+ 1) is locally isometric to the warped product Hn+1(α)×f Rn

or Bn+1(α′) ×f ′ Rn if g satisfies the equation L∗
g(λ) = 0. In [19], Chaubey

et al. studied the non-trivial solution of Fischer-Marsden equation within the
framework of Kenmotsu manifolds.

A Ricci-Bourguignon flow:

∂

∂t
g = −2(S − ρrg), g(0) = g0

on an m-dimensional Riemannian manifold M was introduced by Bourguignon
[11], where S, r, g, t and ρ represent the Ricci tensor, scalar curvature, Rie-
mannian metric, time and real constant, respectively, on M . This family of
geometric flow with ρ = 0 becomes the Ricci flow ( ∂

∂tg = −2S, g(0) = g0),
introduced by Hamilton [31].

A Riemannian metric g on M is said to be a Ricci-Bourguignon soliton
(g,W, µ, ρ) if there exists a vector field W such that

(1.3)
1

2
LWg + S = (µ+ ρr)g,

where LWg represents the Lie derivative of g with respect to the vector field
W (called as the potential vector field of Ricci-Bourguignon soliton). A Ricci-
Bourguignon soliton with µ = 0, µ > 0 or µ < 0 is said to be steady, shrinking
or expanding, respectively, on M . Remark that the Ricci-Bourguignon soliton
is trivial if the potential vector field W is Killing. The conformal version of
this problem with constant scalar curvature has been studied by Fischer [28].
If we choose W = Dh for some smooth function h on M , then equation (1.3)
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takes the form

(1.4) ∇2h+ S = (µ+ ρr)g,

where ∇2h = Hessh (Hessian of h). The Riemannian metric g satisfies equa-
tion (1.4) is known as the gradient Ricci-Bourguignon soliton (Catino and
Mazzieri [16] called it as a gradient ρ-Einstein soliton). In [16], authors proved
that every gradient ρ-Einstein soliton is rectifiable. In this series, some remark-
able results of Ricci-Bourguignon solitons have been studied in [14, 18, 20, 21,
24–26,32].

As far as our knowledge goes, the non-trivial solutions of Fischer-Marsden
equation and the properties of (gradient) Ricci-Bourguignon soliton on general-
ized Sasakian-space-forms are not studied by the researchers. This manuscript
will fill these gaps. The sufficient condition for an M(f1, f2, f3) to be a confor-
mal gradient soliton is proved in the following:

Theorem 1.1. LetM(f1, f2, f3) be a complete connected generalized Sasakian-
space-form with β-Kenmotsu structure. If M(f1, f2, f3) satisfies the Fischer-
Marsden equation, then either M(f1, f2, f3) is a generalized Sasakian-space-
form with cosymplectic structure or a conformal gradient soliton.

We also prove the following:

Theorem 1.2. Let M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasa-
kian-space-form with β-Kenmotsu structure. If M(f1, f2, f3) admits a gradient
Ricci-Bourguignon soliton (g,Dh, µ, ρ), then either M(f1, f2, f3) is Ψ\T k ×
M2n+1−k or gradient η-Yamabe soliton.

2. Almost contact metric manifolds

Let M be a (2n+1)-dimensional differentiable manifold of class C∞ with a
global differentiable 1-form η such that η ∧ (dη)n ̸= 0 everywhere on M . Then
M is said to be an almost contact metric manifold if

(2.1) η(ξ) = 1, ϕ2 + I = η ⊗ ξ

and

(2.2) g(U, V ) = g(ϕU, ϕV ) + η(U)η(V ), g(U, ξ) = η(U)

hold for all U, V ∈ X(M), where I denotes the identity transformation, ϕ is
the structure tensor of type (1, 1), ξ is the unit vector field of type (1, 0) and
g, a compatible Riemannian metric of M [7]. The structure (ϕ, ξ, η, g) on M
is known as an almost contact metric structure to M . From (2.1), it can be
easily seen that

(2.3) ϕξ = 0, η ◦ ϕ = 0 and rank (ϕ) = 2n.

Also, equations (2.1)-(2.3) infer that

g(ϕU, V ) + g(U, ϕV ) = 0
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for all U, V ∈ X(M). An almost contact metric manifold M with dη(U, V ) =
g(U, ϕV ), ∀ U, V ∈ X(M), is known as a contact metric manifold, where d
denotes the exterior derivative operator. If M satisfies the expression [ϕ, ϕ] =
−2dη ⊗ η, where [ϕ, ϕ] represents the Nijenhuis tensor of ϕ, then it is called a
normal contact metric manifold. A contact metric manifold M is Sasakian if
and only if

R(U, V )ξ = η(V )U − η(U)V

for all U , V ∈ X(M) ([7], [8]). It is noticed, from (1.1), that M(f1, f2, f3)
satisfies

(2.4) S(U, V ) = (2nf1 + 3f2 − f3)g(U, V )− (3f2 + (2n− 1)f3)η(U)η(V ),

which is equivalent to

(2.5) QU = (2nf1 + 3f2 − f3)U − (3f2 + (2n− 1)f3)η(U)ξ.

Setting Z = ξ in (1.1) and then using equations (2.1)-(2.3), we find

R(U, V )ξ = (f1 − f3){η(V )U − η(U)V },
R(ξ, U)V = (f1 − f3){g(U, V )ξ − η(V )U}.(2.6)

It is also observed that M(f1, f2, f3) satisfies the following identities:

S(U, ξ) = 2n(f1 − f3)η(U),(2.7)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3(2.8)

for all U ∈ X(M).
LetM(f1, f2, f3) be a generalized Sasakian-space-form of dimension (2n+1)

with β-Kenmotsu structure. Then we have

(2.9) ∇Uξ = β(U − η(U)ξ) ⇐⇒ (∇Uη)(V ) = β(g(U, V )− η(U)η(V )),

which gives (∇ξη)(U) = (∇Uη)(ξ) = 0. Particularily if we choose β = 0 or
β = 1 on M(f1, f2, f3), then M(f1, f2, f3) reduces to the generalized Sasakian-
space-form with cosymplectic and Kenmotsu structures, respectively. In [2],
Alegre and Carriazo proved that a generalized Sasakian-space-form with β-
Kenmotsu structure satisfies the relation f1 − f3 + ξ(β) + β2 = 0. Throughout
the manuscript, we suppose that β is constant on M(f1, f2, f3).

An almost contact metric manifold M is said to be T-semisymmetric if
R(U, V ) · T = 0 for all U, V ∈ X(M), where T is an arbitrary tensor of type
(p, q) and R(U, V ) represents the derivation of tensor algebra at each point of
M for tangent vectors U and V . In particular, if we replace T by R (resp.,
S and C), then we obtain the semisymmetric (resp., Ricci semisymmetric and
Weyl semisymmetric) almost contact metric manifold, where C denotes the
Weyl conformal curvature tensor.
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3. Fischer-Marsden conjecture on generalized-Sasakian-space-forms
with β-Kenmotsu structure

This section deals with the main results of M(f1, f2, f3) with β-Kenmotsu
structure satisfying the equation L∗

g(λ) = 0. To achieve our goal, first we prove
the following proposition.

Proposition 3.1. An M(f1, f2, f3) with β-Kenmotsu structure satisfies

(i) (∇ξQ)(V )−(∇VQ)(ξ) = [ξ((2n−1)f3+3f2)+β(3f2+(2n−1)f3)](V −
η(V )ξ),

(ii) dr(ξ) = −nβ[(2n− 1)f3 + 3f2]

for all V ∈ X(M).

Proof. From (2.7), it is obvious that Qξ = 2n(f1 − f3)ξ. Differentiating it
covariantly with respect to ∇ along the vector field V and then using equation
(2.9), we find

(∇VQ)(ξ) = 2nβ(f1 − f3)η(V )ξ − βQV + 2nV (f1 − f3)ξ

+ 2n(f1 − f3)βV − 2n(f1 − f3)βη(V )ξ.(3.1)

Again, taking the covariant derivative of equation (2.5) with respect to ∇ along
the vector field ξ and then using equations (2.2) and (2.9), we get

(3.2) (∇ξQ)(V ) = ξ(2nf1 + 3f2 − f3)V − ξ(3f2 + (2n− 1)f3)η(V )ξ.

Since β is constant, by hypothesis, and thereforeM(f1, f2, f3) with β-Kenmotsu
structure satisfies the identity f1 − f3 = −β2 (see [2], Proposition 4.3). Thus,

U(2nf1 + 3f2 − f3) = U(3f2 + (2n− 1)f3) + 2nU(f1 − f3)

= U(3f2 + (2n− 1)f3), ∀ U ∈ X(M).(3.3)

The first result of Proposition 3.1 follows from equations (2.5), (3.1), (3.2) and
(3.3). Contracting equation (3.1) along the vector field V and using equations
(2.8) and (3.3), we get the second part of Proposition 3.1. □

Proof of Theorem 1.1. Let M(f1, f2, f3) be a generalized Sasakian-space-form
with β-Kenmotsu structure. Suppose M(f1, f2, f3) satisfies the Fischer-Mars-
den equation, that is, the metric g satisfies equation L∗

g(λ) = 0. With this fact,
equation (1.2) takes the form

(3.4) (△gλ)g + λSg −Hessgλ = 0,

which leads △gλ = − rλ
2n . From equation (3.4), we conclude that

(3.5) ∇UDλ = λQU + fU

for all vector field U on M , where f = − rλ
2n . Taking covariant derivative of

equation (3.5) with respect to∇ along the vector field V , and then the foregoing
equation, (3.5) and identity R(U, V )Dλ = ∇U∇VDλ−∇V ∇UDλ−∇[U,V ]Dλ
give

R(U, V )Dλ = U(λ)QV − V (λ)QU + U(f)V − V (f)U
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+ λ{(∇UQ)(V )− (∇VQ)(U)}.(3.6)

Replacing U by ξ in equation (3.6) and then taking inner product of the fore-
going equation with U , we get

g(R(ξ, V )Dλ,U)

= ξ(λ)S(V,U)− V (λ)S(ξ, U) + ξ(f)g(V,U)− V (f)η(U)

+ λ[ξ((2n− 1)f3 + 3f2) + β((2n− 1)f3 + 3f2)]{g(U, V )− η(U)η(V )}.(3.7)

From equation (2.6), we conclude that

(3.8) g(R(ξ, V )U,Dλ) = (f1 − f3){ξ(λ)g(V,U)− V (λ)η(U)},
where V (λ) = g(V,Dλ). In consequence of equations (2.7), (3.7) and (3.8), we
lead

λ[ξ((2n− 1)f3 + 3f2) + β((2n− 1)f3 + 3f2)]{g(U, V )− η(U)η(V )}
+ ξ(λ)S(V,U)− 2n(f1 − f3)V (λ)η(U) + ξ(f)g(V,U)− V (f)η(U)

= (f1 − f3){V (λ)η(U)− ξ(λ)g(V,U)}.(3.9)

Setting U = V = ei in equation (3.9), where {ei, i = 1, 2, . . . , (2n+1)} denotes
a set of orthonormal vector fields of the tangent space of M(f1, f2, f3), and
then taking summation over i, 1 ≤ i ≤ (2n+ 1), we get

(3.10) rξ(λ) + 2nξ(f) + 2nλ [ξ((2n− 1)f3 + 3f2) + β((2n− 1)f3 + 3f2)] = 0.

It is obvious that 2nf = −rλ. Differentiating this equation covariantly with
respect to ∇ along the vector field ξ, and then following Proposition 3.1(ii), we
conclude that

(3.11) 2nξ(f) = −rξ(λ)− λξ(r).

From equations (3.10) and (3.11), we infer

−λξ(r) + 2nλ [ξ((2n− 1)f3 + 3f2) + β((2n− 1)f3 + 3f2)] = 0,

which becomes

(3.12) −ξ(r) + 2n [ξ((2n− 1)f3 + 3f2) + β((2n− 1)f3 + 3f2)] = 0,

since λ ̸= 0. Now,

(3.13) 3f2 + (2n− 1)f3 =
r

2n
− (2n+ 1)(f1 − f3),

and
3f2 + (2n− 1)f3 = 2nf1 + 3f2 − f3 − 2n(f1 − f3),

where equation (2.8) is used. From equations (3.12), (3.13) and Proposition
3.1(ii) we infer that ξ(r) = 2nξ(3f2+(2n− 1)f3). Using this relation in (3.12),
we find

(3.14) β(3f2 + (2n− 1)f3) = 0.

This infers that either 3f2+(2n−1)f3 = 0 or β = 0. If β = 0, thenM(f1, f2, f3)
becomes a generalized Sasakian-space-form with cosymplectic structure. On
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the other hand, we consider that 3f2 + (2n− 1)f3 = 0 and β ̸= 0. Thus, from
(3.13) we immediately get ξ(r) = 0, that is, r is locally constant along the Reeb
vector field ξ. Using 3f2 + (2n− 1)f3 = 0 in (3.13), we notice that

(3.15) r = 2n(2n+ 1)(f1 − f3),

which shows that the scalar curvature of M(f1, f2, f3) is constant. Equations
(3.9), (3.13), (3.14) and (3.15) give

ξ(λ)S(V,U)− 2n(f1 − f3)V (λ)η(U) + ξ(f)g(V,U)− V (f)η(U)

= (f1 − f3){V (λ)η(U)− ξ(λ)g(V,U)}.

Again from (3.11) and (3.15), we conclude that 2nV (f) = −rV (λ) =⇒
2nξ(λ) = −rξ(λ). Using these relations and equation (3.15) in the above
equation, we find

ξ(λ){S(V,U)− 2n(f1 − f3)g(V,U)} = 0.

This infers that either ξ(λ) = 0 or S = 2n(f1 − f3). If possible, we suppose
that ξ(λ) = 0 and S ̸= 2n(f1 − f3)g. The covariant derivative of ξ(λ) = 0 ⇐⇒
g(ξ,Dλ) = 0 along the vector field U gives

g(∇Uξ,Dλ) + g(ξ,∇UDλ) = 0,

which in view of equations (2.9) and (3.5) becomes

(3.16) βU(λ) + λS(U, ξ) + fη(U) = 0,

since ξ(λ) = 0. Next using f = − r
2nλ, equations (2.7) and (3.15) in (3.16), we

find

βU(λ)− λ(f1 − f3)η(U) = 0,

which gives f1 = f3. Thus from (3.15) we have f = constant. This fact with
equation (3.4) infers that λ = 0 because S ̸= 0. Since we are interested in
the non-trivial solution of Fischer-Marsden equation, therefore the hypothesis
ξ(λ) = 0 is inadmissible. Thus S = 2n(f1 − f3)g. That is the manifold under
consideration is Einstein. Now, from (3.5) we have

(3.17) ∇UDλ = −λ(f1 − f3)U,

which reduces to

(3.18) △λ = −λ(f1 − f3)(2n+ 1).

From equation (3.17), we conclude that

(3.19) ∇∇λ = β2λg,

where β2 = f3 − f1 ̸= 0.
A connected, complete Riemannian manifoldM of dimensionm is said to be

a conformal gradient soliton if ∇2f = εg for some nonconstant smooth function
f, also called potential function of the conformal gradient soliton [15]. Here
ε :M → R is a function.
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This definition together with equation (3.19) prove the statement of Theorem
1.1. □

From Theorem 1.1, we conclude the following:

Corollary 3.2. A generalized Sasakian-space-form M(f1, f2, f3) with β-Ken-
motsu structure satisfying the Fischer-Marsden equation is Einstein.

Corollary 3.3. A (2n+1)-dimensional generalized Sasakian-space-formM(f1,
f2, f3) with β-Kenmotsu structure satisfying Fischer-Marsden equation pos-
sesses the constant scalar curvature.

Corollary 3.4. If a generalized Sasakian-space-form M(f1, f2, f3) with β-
Kenmotsu structure satisfies the Fischer-Marsden equation, then 3f2 + (2n −
1)f3 = 0.

Remark 3.5. In [38], Obata proved that a complete and connected Riemannian
manifold M of dimM > 1 admits a non-trivial solution ϱ of the system of
partial differential equation

(3.20) ∇∇ϱ = −cϱg

if and only if M is isometric to a sphere of radius 1√
c
, c > 0.

The characterization of equation (3.20) with c ≤ 0 has been given in [33].
Kanai [33] proved that if a complete connected Riemannian manifold M of
dimension n satisfies equation (3.20), c < 0, if and only if M is the warped
product M̄ ×h R of a complete Riemannian manifold M̄ and the real line R,
warped by a function h : R → R such that ḧ+ ch = 0, h > 0 (see [33], Corollary
E). This fact with equation (3.19) state that a (2n+ 1)-dimensional complete
connected generalized Sasakian-space-form with β-Kenmotsu structure satisfy-
ing the Fischer-Marsden equation is a warped product M̄ ×h R of a complete
Kähler manifold M̄ of dimension 2n and the real line R, where the warping
function h satisfies the equation ḧ− β2h = 0.

Let N(c) be a complex space form with constant holomorphic sectional cur-
vature c. We know that a complete and simply connected complex space form
consists of a complex projective space (CPn), a complex Euclidean space (Cn)
or a complex hyperbolic space (CHn) according as c > 0, c = 0, or c < 0,
respectively. For instance, see [5, 34,43]. Alegre, Blair and Carriazo [1] proved
that the warped product M = N(c) ×γ R, γ = γ(t)( ̸= 0), endowed with an
almost contact metric structure (ϕ, ξ, η, gγ) is a generalized Sasakian-space-

form M(f1, f2, f3) with β-Kenmotsu structure, where β = γ̇
γ and the smooth

functions f1, f2, f3 are given by

(3.21) f1 =
c− 4(γ̇)2

4γ2
, f2 =

c

4γ2
, f3 =

c− 4(γ̇)2

4γ2
+
γ̈

γ
.

Here γ̇ and γ̈ are, respectively, the first and second derivatives of γ with respect
to t and R denotes the real line.
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Let M(f1, f2, f3) = N(c)×γ R satisfy the Fischer-Marsden equation. Then
from Theorem 1.1, we conclude that f1 − f3 = −β2 and 3f2 + (2n− 1)f3 = 0.
Now, equation (3.21) gives γ̈ = β2γ and

3f2 + (2n− 1)f3 =
(n+ 1)c

2γ2
.

This shows that 3f2 + (2n − 1)f3 = 0 if and only if c = 0, that is, N(c) is a
complex Euclidean space. Thus, we can state:

Proposition 3.6. A complete connected generalized Sasakian-space-form
M(f1, f2, f3) with β-Kenmotsu structure satisfying the Fischer-Marsden equa-
tion is a warped product Cn ×γ R of a complete complex Euclidean space Cn

and the real line R, warped by a function γ : R → R.

Suppose that the generalized Sasakian-space-form with β-Kenmotsu struc-
ture admits the Fischer-Marsden conjecture. Then from Theorem 1.1, we have
3f2 + (2n− 1)f3 = 0, and consequently equation (2.4) takes the form

S = 2n(f1 − f3)g.

It is well-known that

(R(X,Y )·S)(U, V )=−S(R(X,Y )U, V )−S(U,R(X,Y )V ), ∀ X,Y, U, V ∈X(M).

The last two equations infer that R · S = 0. That is, the manifold under
consideration is Ricci semisymmetric. Thus, we can state:

Corollary 3.7. If the generalized Sasakian-space-form M(f1, f2, f3) with β-
Kenmotsu structure admits the Fischer-Marsden conjecture, then it is Ricci
semisymmetric.

Remark 3.8. By the straight forward calculations (as like Corollary 3.7), we
can easily show that if M(f1, f2, f3) with β-Kenmotsu structure satisfies the

Fischer-Marsden equation, thenM is Ricci concircular semisymmetric (Ĉ(U, V )·
S = 0), Ricci projective semisymmetric (P (U, V ) · S = 0) and Ricci conformal

semisymmetric (C(U, V ) · S = 0), where Ĉ, P and C denote the concircular,
projective and conformal curvature tensors, respectively.

4. Ricci-Bourguignon solitons on generalized Sasakian-space-forms
with β-Kenmotsu structure

Let M(f1, f2, f3) admit a Ricci-Bourguignon soliton (g,W, µ, ρ). Then from
equation (1.3) we have

1

2
[g(∇UW, V ) + g(U,∇V W)] + S(U, V ) = (µ+ ρr)g(U, V ),

where S is the non-vanishing Ricci tensor of M . Let the potential vector field
W of Ricci-Bourguignon soliton be pointwise collinear with the Reeb vector
field ξ, that is, W = aξ for some smooth function a. Then we have

∇UW = U(a)ξ + a∇Uξ = U(a)ξ + aβ(U − η(U)ξ),
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where equation (2.9) is used. The last two equations together with equation
(2.4) give

2(µ+ ρr)g(U, V )

= U(a)η(V ) + V (a)η(U) + 2aβ{g(U, V )− η(U)η(V )}
+ 2{(2nf1 + 3f2 − f3)g(U, V )− (3f2 + (2n− 1)f3)η(U)η(V )}.(4.1)

Substitute ξ in lieu of V in the above equation, we find

(4.2) U(a) = {2(µ+ ρr)− ξ(a)− 4n(f1 − f3)}η(U),

where equations (2.1) and (2.2) are used. Again, setting U = ξ in the above
equation we obtain

(4.3) µ+ ρr = ξ(a) + 2n(f1 − f3).

Using equation (4.3) in equation (4.2), we conclude that

(4.4) Da = ξ(a)ξ.

In consequence of equations (4.3) and (4.4), equation (4.1) assumes the follow-
ing form

ξ(a)η ⊗ η + aβ{g − η ⊗ η}+ (2nf1 + 3f2 − f3)g − (3f2 + (2n− 1)f3)η ⊗ η

= {ξ(a) + 2n(f1 − f3)}g.

Let {ei : i = 1, 2, . . . , (2n + 1)} denote an orthonormal basis of M(f1, f2, f3).
Then contraction of the above equation gives

(4.5) ξ(a) = aβ + 3f2 + (2n− 1)f3.

By considering above facts, we can state:

Proposition 4.1. Let a (2n+1)-dimensional generalized Sasakian-space-form
with β-Kenmotsu structure admit a Ricci-Bourguignon soliton (g,W, µ, ρ). If
the potential vector field W of (g,W, µ, ρ) is pointwise collinear with the Reeb
vector field ξ, that is, W = aξ for some smooth function a, then the gradient
of ‘a’ is pointwise collinear with the Reeb vector field ξ.

Particularly, we take ξ = ∂
∂t then (4.5) reduces to

(4.6)
∂a

∂t
− aβ = 3f2 + (2n− 1)f3.

The straightforward calculations show that a = C1e
βt + eβt

∫
e−βt(3f2 +(2n−

1)f3)dt is a solution of the partial differential equation (4.6). Here C1 is a
smooth function, which is independent of t. Thus we conclude our finding as:

Corollary 4.2. Let the metric of a (2n+1)-dimensional generalized Sasakian-
space-form with β-Kenmotsu structure be a Ricci-Bourguignon soliton (g,W,
µ, ρ). If the potential vector field W of (g,W, µ, ρ) is pointwise collinear with
the Reeb vector field ξ, then a satisfies PDE (4.6) and determined by a =
C1e

βt + eβt
∫
e−βt(3f2 + (2n− 1)f3)dt.



352 S. K. CHAUBEY AND Y. J. SUH

Proof of Theorem 1.2. Let M(f1, f2, f3) admit a gradient Ricci-Bourguignon
soliton. Then from equation (1.4), we have

(4.7) ∇UDh+QU = (µ+ ρr)U, ∀ U ∈ X(M).

Differentiating equation (4.7) covariantly with respect to the vector field V , we
find

(4.8) ∇V ∇UDh = −(∇VQ)(U)−Q(∇V U) + ρV (r)U + (µ+ ρr)∇V U.

Using equations (4.7) and (4.8) in the curvature identity

R(U, V )Dh = ∇U∇VDh−∇V ∇UDh−∇[U,V ]Dh,

we lead to

(4.9) R(U, V )Dh = (∇VQ)(U)− (∇UQ)(V ) + ρ{U(r)V − V (r)U}.
From equation (2.7), we have Qξ = 2n(f1 − f3)ξ. The covariant derivative of
this equation along the vector field U gives

(∇UQ)(ξ) = −βQU + 2nβ(f1 − f3)U,

where equation (2.9) has been used. From equations (2.5) and (2.9), it is clear
that

(∇UQ)(V ) = U(3f2 + (2n− 1)f3){V − η(V )ξ}
− β(3f2 + (2n− 1)f3)[g(U, V )ξ + η(V )U − 2η(U)η(V )ξ],(4.10)

since f1 − f3 = −β2. Interchanging U and V in equation (4.10) and then
subtracting foregoing equation with (4.10), we infer

(∇UQ)(V )− (∇VQ)(U) = U(3f2 + (2n− 1)f3){V − η(V )ξ}
− V (3f2 + (2n− 1)f3){U − η(U)ξ}
− β(3f2 + (2n− 1)f3)[η(V )U − η(U)V ].(4.11)

Contracting equation (4.9) over U , we find

S(V,Dh) =

[
1

2
− 2nρ

]
V (r).

Also, from (2.8) we get

(4.12) V (r) = 2nV (3f2 + (2n− 1)f3),

since f1 − f3 is constant. The last two equations give

(4.13) S(V,Dh) = n(1− 4nρ)V (3f2 + (2n− 1)f3).

We have from (2.4)

(4.14) S(V,Dh) = (2nf1 + 3f2 − f3)V (h)− (3f2 + (2n− 1)f3)ξ(h)η(V ).

Comparing right hand sides of (4.13) and (4.14), we find

n(1− 4nρ)V (3f2 + (2n− 1)f3)

= (2nf1 + 3f2 − f3)V (h)− (3f2 + (2n− 1)f3)ξ(h)η(V ).(4.15)
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Contracting (4.11) over U , we find

V (r) = 2(2n− 1)V (3f2 + (2n− 1)f3) + 2ξ(3f2 + (2n− 1)f3)η(V )

+ 4nβ(3f2 + (2n− 1)f3)η(V ).(4.16)

In view of (4.12) and (4.16), we obtain

(n− 1)V (3f2 + (2n− 1)f3)

=− {ξ(3f2 + (2n− 1)f3) + 2nβ(3f2 + (2n− 1)f3)}η(V ).(4.17)

Replacing V with ξ in the above equation, we lead to ξ(3f2 + (2n − 1)f3) =
−2β(3f2 + (2n− 1)f3). Using this result in (4.17), we find

V (3f2 + (2n− 1)f3) = −2β(3f2 + (2n− 1)f3)η(V ).(4.18)

In consequence of (4.18), equation (4.15) reduces to

n(4nρ− 1)2β(3f2 + (2n− 1)f3)η(V )

= 2n(f1 − f3)V (h) + (3f2 + (2n− 1)f3)V (h)

− (3f2 + (2n− 1)f3)ξ(h)η(V ).(4.19)

Setting V = ξ in the above equation, we find

(4.20) β(4nρ− 1)(3f2 + (2n− 1)f3) = (f1 − f3)ξ(h).

Equations (4.19) and (4.20) infer that

[V (h)− ξ(h)η(V )]{2n(f1 − f3) + 3f2 + (2n− 1)f3} = 0.

This shows that either 3f2 + (2n− 1)f3 = 2nβ2 or V (h) = ξ(h)η(V ). Now we
divide our study in two cases as:
Case I. We suppose that 3f2 + (2n − 1)f3 = 2nβ2 = constant and V (h) ̸=
ξ(h)η(V ). This fact together with (4.18) conclude that 3f2 + (2n − 1)f3 =
0 and β = 0. These relations and equation (2.4) reveal that the manifold
M(f1, f2, f3) is Ricci flat. In [30], Fischer and Wolf have studied the properties
of compact Ricci-flat Riemannian manifolds and established several interesting
results. They proved that a compact connected Ricci-flat m-manifold Mm

has the expression Mm = Ψ\T k ×Mm−k, where k is the first Betti number
b1(M

m), T k is a flat Riemannian k-torus,Mm−k is a compact connected Ricci-
flat (m − k)-manifold, and Ψ is a finite group of fixed point free isometries of
T k ×Mm−k of a certain sort (see Theorem 4.1, [30]).

Since β = 0. Thus M(f1, f2, f3) becomes a generalized Sasakian-space-form
with cosymplectic structure and it can be expressed as:

M = Ψ\T k ×M2n+1−k,

provided V (h) ̸= ξ(h)η(V ).
Case II. We consider that 2nf1+3f2−f3 ̸= 0 and V (h) = ξ(h)η(V ) ⇐⇒ dh =
ξ(h)∧ η. The exterior derivative of this expression gives d2h = d(ξ(h))∧ η = 0,
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since d2 = 0 and η is closed. This infers that ξ(h) is constant. The covariant
derivative of Dh = ξ(h)ξ along the vector field U gives

∇UDh = U(ξ(h))ξ + ξ(h)β(U − η(U)ξ)

= ξ(h)β(U − η(U)ξ),

since ξ(h) is constant. This equation takes the form

(4.21) Hess(h) = ξ(h)β(g − η ⊗ η).

A Riemannian manifold M of dimension m is said to be a gradient general-
ized soliton [6] if there exist ℵ1, ℵ2, ℵ3 ∈ R such that

∇Dp+ ℵ1Q = ℵ2I + ℵ3η ⊗ ξ,

where Q denotes the Ricci operator, I is the identity map, p is a smooth
function on M and η is a 1-form associated to ξ, that is, g(U, ξ) = η(U)
for all U . Particularly, if we choose ℵ1 = 0 in the above equation then the
gradient generalized soliton reduces to the gradient η-Yamabe soliton. From
last two equations, we conclude that M(f1, f2, f3) with β-Kenmotsu structure
is a gradient η-Yamabe soliton. This completes the proof of Theorem 1.2. □

We suppose that M(f1, f2, f3) admits a gradient Ricci-Bourguignon soliton
and Dh ̸= ξ(h)ξ. Then from Theorem 1.2 we have 3f2 + (2n − 1)f3 = 0, and
β = 0. Now, from (2.9), we notice that ∇ξ = 0 and henceM(f1, f2, f3) reduces
to a generalized Sasakian-space-form with cosymplectic structure. We have the
following corollary as:

Corollary 4.3. A (2n+1)-dimensional generalized Sasakian-space-formM(f1,
f2, f3) with β-Kenmotsu structure satisfying a gradient Ricci-Bourguignon soli-
ton is a generalized Sasakian-space-form with cosymplectic structure, provided
Dh ̸= ξ(h)ξ.

Again, we consider that an M(f1, f2, f3) with Kenmotsu structure admits a
Ricci-Bourguignon soliton and Dh ̸= ξ(h)ξ. Then we have r = 0, that is the
scalar curvature of M(f1, f2, f3) is vanishes identically. In view of this fact,
equation (1.4) reduces to

(4.22) ∇2h = µg,

which is the conformal gradient soliton [15]. Now, we state:

Corollary 4.4. A gradient Ricci-Bourguignon soliton on M(f1, f2, f3) with
β-Kenmotsu structure is a conformal gradient soliton, provided Dh ̸= ξ(h)ξ.

Let M(f1, f2, f3) with β-Kenmotsu structure admit a gradient Ricci-Bour-
guignon soliton and Dh ̸= ξ(h)ξ. Then we have 2nf1 + 3f2 − f3 = 0. That is
the smooth functions f1, f2 and f3 are linearly dependent. Thus we state:

Corollary 4.5. Let M(f1, f2, f3) with β-Kenmotsu structure admit a gradient
Ricci-Bourguignon soliton. Then the smooth functions f1, f2 and f3 are linearly
dependent, provided Dh ̸= ξ(h)ξ.
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LetM(f1, f2, f3) with β-Kenmotsu structure, β ̸= 0, admit a gradient Ricci-
Bourguignon soliton (g,Dh, µ, ρ). Then from Theorem 1.2 we haveDh = ξ(h)ξ.
Now, taking covariant derivative of Dh = ξ(h)ξ along U we find

∇UDh = g(∇Uξ,Dh)ξ + g(ξ,∇UDh)ξ + g(ξ,Dh)∇Uξ.

In consequence of equations (2.7), (2.9), (4.7) and U(h) = ξ(h)η(U)ξ, the above
equation assumes the form

(4.23) ∇UDh = βξ(h)(U − η(U)ξ) + (µ+ ρr − 2n(f1 − f3))η(U)ξ.

Contracting equation (4.23) over U , we find

△h = λ1,

where λ1 = 2n[βξ(h)− (f1− f3)]+µ+ρr and △ denotes the Laplace operator.
A partial differential equation △ψ = φ on a Riemannian manifold M is

termed as the Poisson’s equation for smooth functions φ and ψ.
Thus, we can state our result as:

Corollary 4.6. Let the metric of a generalized Sasakian-space-form M(f1, f2,
f3) with β-Kenmotsu structure, β ̸= 0, be a gradient Ricci-Bourguignon soli-
ton (g,Dh, µ, ρ). Then the potential function h of (g,Dh, µ, ρ) satisfies the
Poisson’s equation △h = 2n[βξ(h)− (f1 − f3)] + µ+ ρr.
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