References
- I. S. Baek, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292 (2004), no. 1, 294-302. https://doi.org/10.1016/j.jmaa.2003.12.001
- I. S. Baek, Multifractal analysis of a general coding space, J. Chungcheong Math. Soc. 19 (2006), no. 4, 357-364.
- I. S. Baek, L. Olsen and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007), no. 1, 267-287. https://doi.org/10.1016/j.aim.2007.02.003
- I. S. Baek, Dimensions of distribution sets in the unit interval, Comm. Korean Math. Soc. 22 (2007), no. 4, 547-552. https://doi.org/10.4134/CKMS.2007.22.4.547
- I. S. Baek, Dimensionally equivalent spaces, J. Chungcheong Math. Soc. 21 (2008), no. 4, 527-532.
- C. D. Cutler, A note on equivalent interval covering systems for Hausdorff dimension on R, Intern. J. Math. & Math. Sci. 11 (1988), no. 4, 643-650. https://doi.org/10.1155/S016117128800078X
- Manav Das, Billingsley's packing dimension, Proc. Amer. Math. Soc. 136 (2008), no. 1, 273-278. https://doi.org/10.1090/S0002-9939-07-09069-7
- G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer Verlag, 1990.
- K. J. Falconer, The Fractal Geometry, John Wiley & Sons , 1990.
- H. H. Lee and I. S. Baek, A note on equivalent interval covering systems for packing dimension of R, J. Korean Math. Soc. 28 (1991), 195-205.
- L. Olsen, Extremely non-normal numbers, Math. Proc. Camb. Phil. Soc. 137 (2004), 43-53. https://doi.org/10.1017/S0305004104007601