Choi, Jung-Hwan;Ryu, Sang-Hyun;Jang, Hyun-Su;Eom, Young-Ik
185
최근 유비쿼터스 시대의 도래와 함께 개인화된 서비스를 제공하기 위한 다양한 서비스 모델들이 제안되어 왔으며, 특히, 사용자에게 개인화된 서비스를 선응적으로 제공하기 위한 다양한 추천 서비스 기법들이 고안되었다. 그러나, 기존의 기법들은 수 많은 데이터를 여과 과정 없이 분석함으로써 추천의 효율성이 떨어지며, 한정된 상황 인지 정보만용 추천 요소로 고려하기 때문에 사용자에게 개인화된 서비스를 제공하기에 적합하지 않다. 본 논문에서는 유비쿼터스 환경에서 사용자의 현재 상황에 가장 적합한 서비스를 제공하는 적응형 추천 서비스 기법을 제안한다. 본 기법은 사용자의 선호도 예측을 위해 누적된 사용자와 장치 간의 상호작용 상황 정보들을 이용하며, 군집 및 협업 필터링 기법을 이용하여 사용자에게 현재 상황에 적응적인 서비스를 추천한다. 군집 기법을 통해 사용자의 현재 위치에 근접한 데이터만을 분석함으로써, 추천의 효율성을 높이며, 협업 필터링을 이용하여 누적된 정보들이 충분하지 않은 상황에서도 정확한 추천을 보장한다. 끝으로, 시뮬레이션을 통해 본 기법의 성능 및 신뢰성을 평가한다.