본 논문에서는 분야 온톨로지 구축을 위하여 분야 상위 온톨로지를 구축한 다음, 분야 시소러스의 개념과 관계를 이용하여 분야 상위 온톨로지를 확장하는 방법을 제안한다. 이를 위하여 우선 일반분야 시소러스와 분야 사전을 이용하여 분야 상위 개념 분류체계를 구축한다. 다음, 분야 시소러스의 개념을 분야 상위 온톨로지의 상위 개념으로 분류하고, 광의어(Broader Term: BT)-협의어(Narrower Term: NT) 및 광의어-관련어(Related Term: RT) 사이의 관계를 분야 상위 온톨로지에서 정의한 의미관계로 분류한다. 개념 분류는 두 단계로 진행되는데, 1단계에서는 빈도수 기반 방법, 2단계에서는 유사도 기반방법을 적용하여 시소러스 개념을 분야 상위 온톨로지의 개념으로 분류한다. 관계 분류에서는 두 가지 방법을 적용하였는데, (i) 훈련데이타가 부족한 경우를 위하여 규칙기반 방법으로 BT-NT/RT관계를 iso와 기타 관계(non-isa관계)로 분류하고, 다시 패턴기반 방법으로 non-isa관계를 온톨로지를 위한 의미관계로 분류한다. (ii) 훈련데이타를 충분히 가지고 있을 경우, 최대 엔트로피 모델(MEM)을 적용한 특징기반 분류 기법을 사용하되, k-Nearest Neighbors(k-NN)방법으로 훈련데이타를 정제하였다. 본 논문에서 제안한 방법으로 시스템을 구축하였고, 실험 결과 사람에 의한 판단 결과와 비교 가능한 성능을 보여 주었다.