본 논문은 다양한 형태의 웹 문서에 적용하기 위해서, 언어의 통계정보 및 후처리 규칙에 기반하여 개선한 문장경계 인식 기술을 제안한다. 제안한 방법은 구두점 생략 및 띄어쓰기 오류가 빈번한 웹문서에 적용하기 위해서 문장경계로 사용될 수 있는 모든 종결어미를 대상으로 학습하여 문장경계 인식을 수행하였다. 또한 문장경계인식 성능을 최대화하기 위해서 다양한 실험을 통해 최적의 자질 및 학습데이터를 선정하였고, 학습데이터에 의존적인 통계모델의 오류를 규칙에 기반 해서 보정하였다. 성능 실험은 다양한 문서별 성능 측정을 위해서 구두점이 주로 문장경계로 사용된 문어체 위주의 평가셋1(신문기사와 블로그 문서)과 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 문서 위주의 평가셋2(웹 사이트의 게시판 글)를 대상으로 성능을 측정하였다. 평가 척도로는 F-measure를 사용하였으며, 기존 연구와 동일하게 구두점만을 문장경계 대상으로 학습한 기본 모델을 만들어서 실험한 결과, 평가셋1에 대해서 96.5%의 성능을 보였지만, 평가셋2에 대해서는 56.7%로 매우 저조한 성능을 보였다. 제안하는 개선 방법은 기본 모델을 웹 문서의 특징을 반영시키도록 자질 및 엔진을 개선시켰고, 최종 모델을 평가셋2로 평가한 결과, 96.3%의 성능을 보여서 39.6%의 성능 향상이 있음을 확인하였다.