HMM은 파라미터의 수가 많을수록 모델링 성능이 향상되어 해당 클래스 데이타는 뿐만 아니라 혼동되는 다른 클래스 데이타에 대해서도 높은 확률을 출력하는 경향이 있다. 그러므로 단순히 파라미터 수를 증가 시키는 것은 변별력 향상에 도움이 되지 않는다. 본 논문에서는 혼동되는 클래스 데이터의 확률을 이용한 혼동 확률 선택 기준CMC(Confusion Model Selection Criterion)과 혼동 클래스 데이터를 구성하여 혼동 모델을 만들고 이것을 이용한 새로운 인식 방법인 RCM(Recognition using Confusion Models)을 제안하였다. 제안한 인식 방법은 혼동되는 클래스 데이타의 구성으로 혼동 데이타 집합을 만들고 이것을 이용하여 별도의 혼동 모델을 훈련한 후, 혼동 모델의 확률을 해당 표준 모델의 확률에서 차감하여 해당 클래스 데이타의 오인식 가능성을 억제한다. 모델 선택 기준 CMC를 온라인 필기 숫자 데이타를 대상으로 실험하여 기존 모델 선택 기준인 ML, ALC2, BIC와 비교 분석한 결과, 제안한 방법인 CMC가 적은 파라미터로 좋은 결과를 보였으며, 제안한 혼동 모델 인식 방법인 RCM은 93.08%의 인식률을 보여 표준 모델만을 사용한 인식한 방법보다 정인식률이 약 1.5%향상되었고, 이는 오류의 17.4%가 감소된 결과이다.