최근 들어 DNA 컴퓨팅이 활발하게 연구되면서, DNA 컴퓨팅에서 가장 기본적이고도 중요한 DNA 서열 디자인 문제가 부각되고 있다. 기존의 연구에서 DNA 서열 디자인 문제를 다중목적 최적화 문제로 정의하고, elitist non-dominated sorting genetic algorithm(NSGA-II)를 이용하여 성공적으로 DNA 서열을 디자인하였다. 그런데, NSGA-II는 계산속도가 느리다는 단점이 있어서, 이를 극복하기 위해 본 논문에서는 $\varepsilon$-다중목적함수 진화알고리즘(r-Multiobjective evolutionary algorithm, $\varepsilon$-MOEA)을 DNA 서열 디자인에 이용하였다. 우선, 두 알고리즘의 성능을 보다 자세히 비교하기 위해서 DTLZ2 벤치 마크 문제에 대해서 적용한 결과, 목적함수의 개수가 작은 경우에는 큰 차이가 없으나, 목적함수의 개수가 많을 경우에는 $\varepsilon$-MOEA가 NSGA-II에 대해서 최적해를 찾는 정도(Convergence)와 다양한 해를 찾는 정도 (diversity)에 있어서 각각 $70\%,\;73\%$ 향상된 성능을 보여주었고, 또한 최적해를 찾는 속도도 비약적으로 개선되었다. 이러한 결과를 바탕으로 기존의 DNA 서열 디자인 방법론으로 디자인된 DNA 서열들과 7-순환외판원 문제 해결에 필요한 DNA 서열을 NSGA-II와 $\varepsilon$-MOEA로 재디자인하였다. 대부분의 경우 $\varepsilon$-MOEA가 우수한 결과를 보였고, 특히 7-순환외판원 문제에 대해서 NSGA-II와 비교하여 convergence와 diversity의 측면에서 유사한 결과를 2배 이상 빨리 발견하였고, 동일한 계산 시간을 이용해서는 $22\%$ 정도 보다 다양하게 해를 발견하였으며, $92\%$ 우수한 최적해를 발견하는 것을 확인하였다.