References
- U. Schmidt and C. Begley, 'Cancer diagnosis and microarrays,' The Int. J. of Biochemistry & Cell Biology, vol. 35, no. 2, pp. 119-124, 2003 https://doi.org/10.1016/S1357-2725(02)00124-3
- I. Sarkar, et aI., 'Characteristic attributes in cancer microarrays,' J. of Biomedical Informatics, vol. 35, no. 2, pp. 111-122, 2002 https://doi.org/10.1016/S1532-0464(02)00504-X
- J. Khan, et aI., 'Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,' Nature Medicine, vol. 7, no. 6, pp. 673-679, 2001 https://doi.org/10.1038/89044
- V. Roth and T. Lange, 'Bayesian class discovery in microarray datasets,' IEEE Trans. Biomedical Engineering, vol. 51, no. 5, pp. 707-718, 2004 https://doi.org/10.1109/TBME.2004.824139
- C. Ding and I. Dubchak, 'Multi-class protein fold recognition using support vector machines and neural networks,' Bioinformatics, vol. 17, no. 4, pp. 349-358, 2001 https://doi.org/10.1093/bioinformatics/17.4.349
- N. Camp and M. Slattery, 'Classification tree analysis: A statistical tool to investigate risk factor interactions with an example for colon cancer,' Cancer Causes and Control, vol. 13, no. 9, pp. 813-823, 2002 https://doi.org/10.1023/A:1020611416907
- L. Li, et aI., 'Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method,' Bioinformatics, vol. 17, no. 12, pp. 1131-1142, 2001 https://doi.org/10.1093/bioinformatics/17.12.1131
- J. Deutsch, 'Evolutionary algorithms for finding optimal gene sets in microarray prediction,' Bioinformatics, vol. 19, no. 1, pp. 45-52, 2003 https://doi.org/10.1093/bioinformatics/19.1.45
- M. Karzynski, et aI., 'Using a genetic algorithm and a perceptron for feature selection and supervised class learning in DNA microarray data,' Artificial Intelligence Review, vol. 20, no. 1-2, pp. 39-51, 2003 https://doi.org/10.1023/A:1026032530166
- W. Langdon and B. Buxton, 'Genetic programming for mining DNA chip data for cancer patients,' Genetic Programming and Evolvable Machines, vol. 5, no. 3, pp. 251-257, 2004 https://doi.org/10.1023/B:GENP.0000030196.55525.f7
- G. Valentini, 'Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles,' Artificial Intelligence in Medicine, vol. 26, no. 3, pp. 281-304, 2002 https://doi.org/10.1016/S0933-3657(02)00077-5
- C. Park and S.-B. Cho, 'Evolutionary computation for optimal ensemble classifier in lymphoma cancer classification,' Lecture Notes in Artificial Intelligence, vol. 2871, pp. 521-530, 2003 https://doi.org/10.1007/b14019
- A. Tan and D. Gilbert, 'Ensemble machine learning on gene expression data for cancer classification,' Applied Bioinformatics, vol. 2, no. 3 Suppl., pp. S75-S83, 2003
- L. Kuncheva, 'A theoretical study on six classifier fusion strategies,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 281-286, 2002 https://doi.org/10.1109/34.982906
- R. Bryll, et aI., 'Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets,' Pattern Recognition, vol. 36, no. 6, pp. 1291-1302, 2003 https://doi.org/10.1016/S0031-3203(02)00121-8
- G. Webb and Z. Zheng, 'Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques,' IEEE Trans. Knowledge and Data Engineering, vol. 16, no. 8, pp. 980-991, 2004 https://doi.org/10.1109/TKDE.2004.29
- D. Optiz and R. Maclin, 'Popular ensemble methods: An empirical study,' J. of Artificial Intelligence Research, vol. 11, pp. 169-198, 1999
- M. Islam, et al., 'A constructive algorithm for training cooperative neural network ensembles,' IEEE Trans. Neural Network, vol. 14, no. 4, pp. 820-834, 2003 https://doi.org/10.1109/TNN.2003.813832
- C. Shipp and L. Kuncheva, 'Relationships between combination methods and measures of diversity in combining classifiers,' Information Fusion, vol. 3, no. 2, pp. 135-148, 2002 https://doi.org/10.1016/S1566-2535(02)00051-9
- J.-H. Hong and S.-B. Cho, 'Rule discovery for cancer classification using genetic programming based on arithmetic operators,' J. of Korea Information Science Society: Software and Applications, vol. 31, no. 8, pp. 999-1009, 2004
- J. Koza, 'Genetic programming,' Encyclopedia of Computer Science and Technology, vol. 39, pp. 29-43, 1999
- Y. Zhang and S. Bhattacharyya, 'Genetic programming in classifying large-scale data: An ensemble method,' Information Sciences, vol. 163, no. 1-3, pp. 85-101, 2004 https://doi.org/10.1016/j.ins.2003.03.028
- M. Brameier and W. Banzhaf, 'Evolving teams of predictors with linear genetic programming,' Genetic Programming and Evolvable Machines, vol. 2, no. 4, pp. 381-407, 2001 https://doi.org/10.1023/A:1012978805372
- F. Fernaandez, et aI., 'An empirical study of multipopulation genetic programming,' Genetic Programming and Evolvable Machines, vol. 4, no. 1, pp. 21-51, 2003 https://doi.org/10.1023/A:1021873026259
- K. Imamura, et aI., 'Behavioral diversity and a probabilistically optimal GP ensemble,' Genetic Programming and Evolvable Machines, vol. 4, no. 3, pp. 235-253, 2003 https://doi.org/10.1023/A:1025124423708
- G. Zenobi and P. Cunningham, 'Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error,' Lecture Notes in Computer Science, vol. 2167, pp. 576-587, 2001 https://doi.org/10.1007/3-540-44795-4_49
- L. Kuncheva and C. Whitaker, 'Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy,' Machine Learning, vol. 51, no. 2, pp. 181-207, 2003 https://doi.org/10.1023/A:1022859003006
- T. Windeatt, 'Diversity measures for multiple classifier system analysis and design,' Information Fusion, 2004
- E. Bruke, et aI., 'Diversity in genetic programming: An analysis of measures and correlation with fitness,' IEEE Trans. Evolutionary Computation, vol. 8, no. 1, pp. 47-62, 2004 https://doi.org/10.1109/TEVC.2003.819263
- L. Kuncheva, et aI., 'Decision templates for multiple classifier fusion: An experimental comparison,' Pattern Recognition, vol. 34, no. 2, pp. 299-314, 2001 https://doi.org/10.1016/S0031-3203(99)00223-X
- S. Tong and D. Koller, 'Support vector machine active learning with applications to text classification,' J. of Machine Learning Research, vol. 2, pp. 45-66, 2001 https://doi.org/10.1162/153244302760185243
- A. Alizadeh, et aI., 'Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,' Nature, vol. 403, no. 6769, pp. 503-511, 2000 https://doi.org/10.1038/35000501
- G. Gordon, et aI., 'Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma,' Cancer Research, vol. 62, no. 17, pp. 4963-4967, 2002
- E. Petricoin III, et aI., 'Use of proteomic patterns in serum to identify ovarian cancer,' The Lancet, vol. 359, no. 9306, pp. 572-577, 2002 https://doi.org/10.1016/S0140-6736(02)07746-2